NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

THORN: A STUDY IN DESIGNING A USABLE
INTERFACE FOR A GEO-REFERENCED DISCRETE
EVENT SIMULATION

by
Patrick Mack
September 2000
Thesis Advisor: Arnold H. Buss
Second Reader: Rudy Darken

Approved for public release; distribution isunlimited.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Blank) .
September 2000 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

THORN: a study in designing a usable interface for a geo-referenced
discrete event smulation

6. AUTHOR(S)

Mack, Patrick, V

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
ORGANIZATION REPORT

Naval Postgraduate School NUMBER

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a.DISTRIBUTION / AVAILABILITY STATEMENT 12b.DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words) T hiS thesis evaluates the usability of THORN: a system for displaying a discrete
event simulation model in a geographic information system. THORN was developed to enhance the planning
phase of Operational Maneuver from the Sea. The goals of this study were to test the system against usability
criteria and provide a benchmark for future testing. The purpose of this analysis was to (1) create a system for
viewing discrete event simulations fused with geo-referenced spatial information, (2) determine the system's
usability, (3) identify problem areas in the graphical user interface, and (4) provide a proof of concept for
incorporating usability in the design of military planning tools. The study’s scenario is based on the principles
outlined in the white paper Operational Maneuver from the Sea. The study tested whether THORN met the
usability objectives of (a) 90% successful tasks completion, (b) ease-of-use ratings of “somewhat easy” or
better, and (c) satisfaction ratings of “somewhat satisfied” or better. THORN met all of these usability

objectives.
14. SUBJECT TERMS 15. NUMBER OF PAGES
Discrete-Event Simulation, Java, Modeling and Simulation, Operational Maneuver from 114
the Sea.
16. PRICE CODE

17. SECURITY 18. SECURITY CLASSIFICATION OF THIS 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

CLASSIFICATION PAGE OF ABSTRACT

OF REPORT . .

e Unclassified Unclassified UL
Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239.18

THISPAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution isunlimited.

THORN: A STUDY IN DESIGNING A USABLE INTERFACE FOR A GEO-
REFERENCED DISCRETE EVENT SIMULATION

Patrick V. Mack
Lieutenant, United States Navy
B.S., Oregon State University, 1992

Submitted in partial fulfillment of the
reguirements for the degrees of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
and
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
SEPTEMBER 2000

Author:

Patrick V. Mack

Approved by:

Arnold H. Buss, Thesis Advisor

Rudy Darken, Second Reader

Richard Rosenthal, Chairman
Department of Operations Research

Dan Boger, Chairman
Department of Computer Science

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

This thesis evaluates the usability of THORN: a system for displaying a discrete event
simulation modd in a geographic information system. THORN was developed to enhance the
planning phase of Operational Maneuver from the Sea. The goals of this study wereto test the
system against usability criteria and provide a benchmark for future testing. The purpose of this
analysiswasto (1) create a system for viewing discrete event simulations fused with geo-
referenced spatial information, (2) determine the system's usability, (3) identify problem areasin
the graphical user interface, and (4) provide a proof of concept for incorporating usability in the
design of military planning tools. The study’s scenario is based on the principles outlined in the
white paper Operational Maneuver from the Sea. The study tested whether THORN met the
usability objectives of (a) 90% successful tasks completion, (b) ease-of-use ratings of “ somewhat
easy” or better, and (c) satisfaction ratings of “somewhat satisfied” or better. THORN met all of

these usability objectives.

THISPAGE INTENTIONALLY LEFT BLANK

Vi

DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available to ensure that the programs are free of computational and logic
errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

Vi

THISPAGE INTENTIONALLY LEFT BLANK

viii

TABLE OF CONTENTS

l. B IO 510 LG I O 1
A. OPERATIONAL MANUVER FROM THE SEA .ttttttuiiieetieetttisseeesseestsissesssseesssnsessssssssnsssssesssn 1
B. 1 1) 6
C. PROBLEM STATEMENT uuttitttuiettteeeetsaessesaeesessssresaesresaseeessesressesressesrerstererasserersseerssnreerernnee 7
D. OUTLINE OF THE THESIS.....ccot ittt ettt e e e ettt s e e e s e e et s e e e e e e neaaaa s 7

1. BACK GROUND ..ottt ittt ettt e ettt s s e e e s s e e et s s s e e et e ee bbb ssseassees bbb s seeessesabbanseeaeres 9
A. (@ V7= | . N 9
B. (0 Ll ST N Y1 = T 11
C. [1 12
D. [ES.Y =1 12 14
E. USABILITY METRICS «.ettuiiiitttiietteteesetateesetasssesasesesassssesas s sasasseresassresaseerssasseressssressseresnsseresnns 16
F. LS 17

1. Y O I oy AN I s 19
A. (0] = N = L 20

T OO 1/ 1 = 1 N 15 TP 21
2 U | LR 24
3. DISCRETE EVENT LAY ER. ... i eeu ittt eeee e et eeeeae e e e eeeeaeeeeeseenaseeeaseenaseenaseeenaeeenes 28
B. (@)Y = ST 01 = N = 30

V. METHODOLOGY AND RESUL TS . oottt e et s s e s s eeabs s s s s s s e esaaa s s eaanes 35
A. [S Y L0 1Y == =T 7Y o 35
B. DATA AN ALY SIS i ituitiittiieitttee ettt retree ittt teraa e resataresa e taraarasasararasterarasarerasereraserernnserernns 36
C. EFFECT OF PARTICIPANT DEMOGRAPHICS.....ccttttiiiieeiiiettiiesseeeeseestaissssssseesssssssssssssssansseesssessses 37
D. INITIAL IMPRESSIONS.ooeiiiiiiiieetees ettt e ettt s e e e s e et s s e e s s e e e b sseeessess b s seeasees 39
E. NS N0 Y 1= T =) N 40
F. USER SATISFACTION L.iiietttuiiieeessesttsassessssesssssssesssessssaseesseessssseessesssssseeessesssnnsseesreeernn. 40

V. SUMMARY AND RECOMMENDATIONS. ...ttt e e et e e e s e eeaaa 43
A. LY 72 3 22 43
B. RECOMMENDATIONS ..etuttttttteeettseeettseeeetaseesesasesesas e sesa e rasaeresasaresasteresasererasarernsseresnnserennns 43

APPENDIX A: CONSENT FORM ..ottt sttt s s e e sttt s s e e s s e e aa b s e e e s e e rabaanes 45

APPENDIX B: THORN SUBJECT QUESTIONNAIREootiiie it a e 47

APPENDIX C: THORN DATA COLLECTION SHEET ..oveiiieeeeeeee et 49

APPENDIX D: FOLLOW-UP ICON RECOGNITION TEST ...ooieteeiee et 51

APPENDIX E: JAVA IMPLEMENTATIO OF ADISCRETE EVENT LAYER IN THORN........... 53

LISTOFREFERENCES.t e e e et e e e e e e e e O
INITIAL DISTRIBUTION LIST .. it e e e e e e e e e e 93

THISPAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

FIGURE L OMIT S PRINCIPLES. ..uuu it eeitttttttesseeeseetsssassssesseessasassssssseesssanssssessesstssansssesssessssssssssssesssssanssessnes 2
FIGURE 2 THORN DISPLAY .eetttuiiiiiiitettiie e e e e e ettt s s e e e s st ettaas s s e e e s e et tbasseeesees bbb s eeeseessbaaasssesseesssransseeanes 6
FIGURE S PHASE] OF OIMIT S ..ottt e e e e ettt s e e e e s e e et b s e s e s s eeabba s e s eeseeeebaaanes 11
FIGURE 4 PHASE Il OMET S ...ttt ettt e s e e e e ettt s e e e e s e e et b sesesseeabba s eeeseesabaaansns 12
FIGURES OPENMAP™ ARCHITECTURE OVERVIEW ..uuuuiiiiiiitttiiieeeesseetssassssessesesssssssssssessssssssesssesssmnnnns 20
FIGURE 6 MAPBEAN ARCHITECTUREccvttuutittetttettstssssesssesssusssessseesssnssesseessssnsessseessnseesseers 21
I GURE 7 ST ATUS LIGHT S i iiiittttiit s e eestttttt e s e eessee st s seeeseea s s sseese e e s b b s ssesseeesbaa s esasseesssaanssesseessrrannsns 22
FIGURE 8 OPENMAP™ VIEWER APPLICATION ..iiittttuiieeeetieessuiasseeesseesssssssesseesssssesessessssseesssess 23
FIGURE O OPENMAPT™ IMENU BAR ...iiiiivtttieieeetieestsiesssesstesssassssssssssssnssesssessssnsessssessssnseesseessrnn 24
FIGURE 10 FILE MENU ITEM .teittttisieeeseeetties s e e e sseettasssssssssesaaasssesssesssaaaasssessse et saaassesasseesssannssesseessssnnnsns 24
FIGURE 11 NAVIGATE MENU ITEM ..uiiiiiiittttuiseeesseestsssssssssesssssssssssssssssnssssssessssnsesessessssseesseesssmn 24
FIGURE 12 CONTROL MENU ITEM tuuuttiiittttttuseeessessssssssssssesssssssesssessssssssesssessssnseessseesssnseesseessmn 25
FIGURE 13 LAYERS MENU ITEM 1uuutiieiitetttussseeessessssssssssssessssssssssssesssnnssesseessssnseessseesssnseesseessn 25
FIGURE 14 HELP MENU ITEM ..ovtttuiiiiiiiitettteeseeesseettsassssessssessaassssssssssssaassssssssesssaansssssssessssannssesseessssnnnsns 26
FIGURE 15 OPENMAPT™ TOOL BAR .. .ciiitvtttueieeetttettsissssessessssassssssssessssnssesssesssnnsesssseesssnsseesseessrinns 26
FIGURE 16 LAYER EDITOR PALETTE ...itiitttttusieeetteestsssssesstesssssssessseesssnnssssssessssnsesesseesssnnseesseersmn 27
FIGURE 17 COORDINATES EDITOR WINDOWieiitetttuseeeereeessuisseessseesssssssssssessssssesessesssseesseers 28
FIGURE 18 MODEL VIEW CONTROLLER PARADIGM ...uuuuiiiiiiiittttiisseeesstesssissssesseessssssssssssesssssnssesssesssns 29
FIGURE 19 SCENARIO TASK SCRIPT ...iiittttttusteeesteesssssssssssesssusssessssesssnssesseessssteesseer e 30
FIGURE 20 SCENARIO START otvttttuitiiettttttttsseeessessssssessstrsssastessstesssstesseeess ettt 31
FIGURE 21 SCENARIO MIDDLE PHASEcevvtuuiteeetieettsiesssessessssussssssseessssssssssessssssesssseesssnnseesseesssnn 32
FIGURE 22 ANNOTATION TASK 1uttuuttieettttstuusseeesseesssssssssseessasssessseesssmseeeseeesstteeteer 33
FIGURE 23 SCENARIO OBSERVATION PHASEiiiiietttieseeeeseettttasssessssesssaasssessssssssnnssssssesssssnsssesssessssnnnss 34
FIGURE 24 ABSTRACT REGRESSION MODELeiiiiiettstisseesseessssssseessssesssssssssseessssssessssessssnnseesseesssn 37
FIGURE 25 REGRESSION COEFFICIENTS AND STATISTICS. .ciittttuiiieeeiiietttiiesseessiresssnssessssessssnsesessesssnnns 38
FIGURE 26 MEAN USER SATISFACTIONSBY TASK eutuuiiiiiiiiittiiiiseeesseetssnssssesssesssssssessssessssnnsseesssesssnns 40
FIGURE 27 ANNOTATION WINDOWeiiietttutsseeesteestsssssesssesssssssesssesssssssesseessssnsesssseesssnnsseesseesssnn 41

Xi

THISPAGE INTENTIONALLY LEFT BLANK

Xii

LIST OF SYMBOLS, ACRONYMSAND/OR ABBREVIATIONS

AOA Analysis of Alternatives

ASM Anti-Ship Missile

c? Command and Control

cl Command, Control, Communications, Computers, and Intelligence
CEP Circular Error Probable

DoD Department of Defense

DP Departure Point

ELAN Enhanced Lanchester

FFTS Forward...From The Sea

GPS Global Positioning System

GIS Geographical Information System
GUI Graphical User Interface

LOD Line of Debarka

MOE Measure of Effectiveness

MOP Measure of Performance

MRS Multiple Rounds Simultaneous | mpact
MVC Model-View-Controller

NEF Naval Expeditionary Force

NGFS Naval Gun Fire Support

NPS Naval Postgraduate School

NSFS Naval Surface Fire Support

OMFTS Operational Maneuver From The Sea
OOP Object-Oriented Programming

OPNAV Office of the Chief of Naval Operations
TACAIR Tactical Aircraft

TAFSM Target Acquisition Fire Support Model
TBM Theater Ballistic Missile

TLAM Tomahawk Land Attack Missile

TLE Target Location Error

TOF Time of Flight

TPM Technical Performance Measure

TTP Tactics, Techniques, and Procedures

Xiii

THISPAGE INTENTIONALLY LEFT BLANK

Xiv

EXECUTIVE SUMMARY

Joint Vision 2010 established a strategic direction for leveraging technological
opportunities to achieve new levels of effectiveness in joint war fighting capabilities for
the United States military. Of JV2010's five areas of focus, Information Superiority is
the most affected by emerging computer, communication, micro-miniaturization, and
Internet technologies. Information Superiority will play a dominant role in the future of
warfare.

The Department of Defense (DoD) has responded to Joint Vison 2010's
technological challenges by developing advanced war fighting concepts like Operational
Maneuver from the Sea (OMFTS). OMFTS is amphibious assault strategy that uses
speed, deception, and communication to overwhelm the opposition. It is highly dependant
on the ability to rapidly plan the assault, monitor both opposition and friendly forces, and
exploit opposition weaknesses as they appear. This major shift in strategy will need to be
extensively studied to ensure its feasibility. The DoD is developing simulation systems to
assist in the study and implementation of OMFTS.

The current DoD simulation systems have been characterized as stove-piped
monolithic systems that are costly, inflexible, and difficult to configure. These
characteristics make these systems unsuitable for use in planning operations like OMFTS.
Modern software development has shifted from the design of large, complex systems to
smal flexible systems that are extremely powerful. The small powerful systems can be
used as components for larger systems. This modular design philosophy gives users the
ability to just use the applicable portions of the system. It also gives software maintainers
the ability to rapidly implement technological advances. The maintainer can simply
remove the old software component and insert a new one. The same update on a stove-
piped system might require a complete software redesign.

Modern software developers have aso recognized the importance of usability.
Usahility describes the efficiency of the interaction between the human and computer.
Highly usable systems are those that require very little user training and enable to user to
operate at or near peak efficiency. Operations such as OMFTS require smulation systems

XV

that are highly usable. OMFTS planners must be able to plan and execute the operation
extremely quickly. They must discover the opposition’s weakness, and maneuver friendly
forcesin amanner that exploits the weakness.

This thesis develops and evaluates the usability of a Geographical Information
System (GIS) designed to support OMFTS mission planning, THORN. THORN is a
smulation system that allows discrete event smulations to be viewed as animated layers
of a map. The map is unique in that it fuses data collected from various repositories with
geographical information. This data fusion gives the analyst the ability to view all
pertinent data of a region in a single display. This ability to view al OMFTS relevant
data of a region in a single display could greatly benefit planners by decreasing decision
cycle time.

THORN is based on an Open Source GI S application called OpenMap™. The use
of Open Source software as a foundation for specific applications gives the application
developer the ahility to incorporate technological advances without incurring commercial
upgrade costs. It aso gives the developer the ability to tailor the graphic user interface
(GUI) to the target users. Schneiderman’s (1997) eight golden rules of interface design to
maximize usability:

1. strive for consistency
. enable frequent users to use shortcuts
. offer informative feedback
. design dialogs to yield closure
. offer error prevention and simple error handling

. permit easy reversal of actions

N o 0o~ WODN

. support internal locus of control
8. reduce short-term memory load
The process of measuring the usability of an application is called Usability
Engineering. Usability Engineering involves testing the efficiency of the Human
Computer Interaction (HCI). A usahility test was conducted on THORN to measure the
efficiency of the interface, to identify problem areas, and to provide a baseline for future
testing. THORN’ S usability testing criteria were set as follows:
* 90% Successful completion of tasks.

XVI

* 90% Error freerate.
* 90% score of 3 or better on a 7 point scae (e.g., 1=easy, 3=somewhat
easy, 5=somewhat difficult, and 7=difficult) in ease-of-use.

The task completion rate, and error free rate were set at 90% due to the nature of the
application environment. OMFTS planning requires a very efficient interface. Task
completion and error free rates of 80% are not uncommon in commercial application
testing. Additionally, it was hypothesized that demographic information could be used to
predict a user’s ability to determine the function of a button by the icon.

THORN met all usability criteria. However, there is room for improvement.
Specifically, the annotation interface should be more consistent and interactive. This
portion of the interface had the lowest user satisfaction, but met the objectives for task
completion. The results of the analysis of demographic data as predictors for button
function were not significant. This may be explained by several factors: the participants
used in this study had very similar demographics, this increase in the overall population’s
computer literacy eliminates the effect of demographic predictors, and the demographic
data collected in this experiment did not contain effective predictors.

THORN successfully combines many of the proven tools from GIS software into
a streamlined design while incorporating the strong design points of Human Factors
guidelines. With continued GUI improvement and testing, THORN can grow to become a
powerful and portable map-based mission-planning tool for OMFTS.

XVii

ACKNOWLEDGMENT

The author would like to express sincere appreciation to his thesis committee
members, Dr. Arnold Buss and Dr.Rudy Darken. Acknowledgement and appreciation is
also due to Dr. Gordon Bradley for his acceptance and assistance with THORN.

Very sincere thanks and gratitude is also expressed to Mrs. Tasha Ginet for her
love, support, patience, and encouragement through this process. | would also like to
thank Riley and Drew Mack for their understanding and continued gift of unconditional

love.

XViil

THISPAGE INTENTIONALLY LEFT BLANK

XiX

I. INTRODUCTION

Joint Vision 2010 (JV2010) establishes a conceptual template for leveraging
technological opportunities to achieve new levels of effectiveness in joint war fighting for
the United States military (CJCS, 1996). Of JV2010's five areas of focus, Information
Superiority is most affected by emerging computer, and software technologies. It is the
intent of the Department of Defense to use Information to “mitigate the impact of the
friction and fog of war.” Information Superiority will smultaneously be used, at the same
time, to deny the enemy the right to the same (CJCS, 1996). Jv2010 provides overall
guidance on the development of new war fighting strategies, and the software used to
plan and implement these strategies.

This thesis provides a prototype software-planning tool, THORN for evaluating
amphibious operations. THORN was developed in the context of a new military strategy
that is heavily reliant on Information Superiority; Operational Maneuver from the Sea

A. OPERATIONAL MANUVER FROM THE SEA

In the white papers, “...from the Sea’” and “Forward ... from the Sea,” the United
States Naval Forces established a visionary approach to naval operations. The approach
shifted National Security interests from the historic oceanic “blue water” activities onto
the littoral areas. The vison aso establishes a framework for the concept of a naval
expeditionary force, and in doing so provides the foundation for Operational Maneuver
from the Sea (OMFTS), Figure 1 summarizes the six fundamental principles of OMFTS.,

OMFTS springs from a desire to capitalize on the opportunities that be may found
in the “chaos in the littoral” — a world characterized by the clash of the myriad forces of
national aspiration, religious intolerance, and ethnic hatred. The opportunity is
manifested by realizing the significant technological advantage the United States has
established, specifically, through enhancements in information management, battlefield
mohility, and improved conventional weapon lethality.

Principles of
Operational M aneuver from the Sea

» Focuses on an operational objective.

* Usesthe sea as maneuver space.

* Generates overwhelming tempo and momentum.

* Pitsstrength against weakness.

» Emphasizesintelligence, deceptions, and flexibility.
» All organic, joint, and combined assets.

Figure 1 OMFTS principles

OMFTS assumes that the majority of future threats to United States national
security will be associated with the littorals, areas characterized by large coastal cities,
concentrated populations, and centers of trade. While these areas make up an
insignificant percentage of the world's total landmass, they account for over 80% of the
world's capital cities and the majority of the marketplaces for international trade. These
characteristics make the littoral the most likely location of important future conflicts.

If America desires to continue to influence global events, it must have a credible,
forward deployable power projection capability. This capability should include a force
that is independent of forward staging areas, friendly borders, or other politically based
constraints. The uncertainty of future conflict dictates that the US maintain a wholly self-
sufficient force capable of projecting power ashore against opposition forces and to
support our national strategic policy.

OMFTS' defining characteristic is the maneuvering of naval forces at the
operationa level to exploit a significant enemy weakness in order to deal a decisive blow.
Movement that may lead to unproductive or counterproductive results does not qualify as
an Operational Maneuver. An Operational Maneuver should be directed against an enemy
center of gravity: something that is essential to the enemy’s ability to effectively continue
the fight. This center of gravity may be physical (units, cities, command structure) or a
sustaining entity (logistics system). However, the center of gravity could also be an
intangible element of the political and mora forces that bind our enemy in the fight
against our forces.

Maneuvering against the enemy is not new or unique; what distinguishes OMFTS
is the use of the sea as a movement medium. This characteristic enables amphibious
forces to use the sea as a means of gaining advantage and as an avenue for friendly
movement that is simultaneoudly a barrier to the enemy and a means of avoiding
tactically unwise engagements. Technologies that make this possible include, but are not
limited to, sea-based logistics, sea-based fire support and the use of the sea as a medium
for tactical and operational movement.

Command and control systems oriented toward rapid decision-making at all levels
of command, give Naval forces the speed and flexibility needed to reduce the decision
cycle time to orders of magnitude lower than that of the opposing force. This shortened
cycle will give friendly forces the ability to exploit enemy vulnerabilities before they can
be corrected. In essence, friendly naval forces will be able to act so quickly that the
opposing force will not be able to stave off the attack and will be overwhelmingly
defeated.

This major change in strategy must be exercised and evaluated to ensure success
when used on the battlefield. The use of computer smulation systems to assist in the
evaluation of military strategies is an effective means of identifying potential problems.
However, as stated in DoD 5000.59-P, "DoD Modeling and Simulation (M&S) Master
Plan", current smulation systems:

* Are narrowly focused, stove-piped developments for each user
community.

» Taketoo long to build.

* Arenot interoperable with other M& S assets that could be useful.

» Arenot easily maintainable or extensible.

Operations like OMFTS have to be planned, exercised, and executed in a very
short period of time. The success of these strategies is directly proportional to the ability
to execute operations before the opposition can respond. THORN was developed to
address the need for a simulation system that is portable, easily configured, and can be
run and reconfigured in arelatively short time.

Current simulation systems do not provide a flexible, portable tool for the analysis
of operations like OMFTS. As stated earlier these stove-piped systems do not fully meet
the needs of the military, and are not interoperable with other assets that could be useful.

Simulation systems should depict the battle-space as a Geographical Information
System (GIS). A GIS is a computer system capable of assembling, storing, manipulating,
and displaying geographically referenced information, that is, data identified according to
their locations. They should provide a singular, fused view of the environment that gives
the analyst access to al of the pertinent information as layers that are created
independently of each other, and can be fused by geography. The significant advantage of
the GIS type application lies in the ability to gather current data from worldwide
repositories, some of which may have no visual component, and display this data in an
environment that promotes rapid power analysis, model verification, and validation.

The current trend in DoD simulation development is to provide a singular
software solution for al smulation requirements. This approach to software design has
proven to be expensive, complex, and extremely difficult to configure. Strategies like
OMFTS require smulations systems that can be run on a vast array of computational
devices. OMFTS planning and preparation must be conducted at all levels of the force,
from the general officer to the sergeant embarked in the amphibious assault ship. This
need for readily available planning tools trandlates to an ability to use the software on
computers that range from the hand-held to the supercomputer. Current DoD simulation
systems have been developed for the desktop personal computer, or the workstation.
These systems, by the inherent complexity of design, can be difficult to configure and
update. As shown in the OMFTS scenario in chapter |1, this strategy depends on the
ability to rapidly deploy forces in a manner that will overwhelm the opposition forces.
The decision to deploy the force is made after the engagement has started. This
compressed timeline demands a planning tool that can be configured and reconfigured
extremely rapidly.

A software tool must be usable to be effective. As the software design discipline
matures, the importance of incorporating software usability into the development process
has increased. The current DoD simulation system’s approach to software design seems
to address usability as an afterthought. By specifying a system that is capable of

performing every conceivable task, you aso require the user, who may only need to
perform relatively smple tasks, to learn how to manipulate this complex system to get a
relatively simple solution. This approach runs counter to that of modern software design,
which develops small-specialized software products capable of performing relatively
small task sets extremely well and integrates them using a component architecture.

Joint Vision 2010 details the rapidly changing aspect of modern warfare. It
establishes the need for strategies that can be updated rapidly to leverage advances in
technology. Planning tools must have, as part of their design, the ability to be rapidly
updated. Large, complex simulation tools that have not been designed as modules, and
can be easlly replaced with updated technology, cannot meet this requirement for rapid
updates.

B. THORN

THORN, see Figure 2, was developed to fuse spatially related data from various

repositories with information obtained from a running discrete event simulation. It is a

system for rapidly planning and evaluating military operations. THORN addresses the
need for a usable smulation application that can be rapidly configured with the best
information available, provide real-time information coupled with data obtained from an

empirical smulation, and can be run on any available computer. It is these features that
make THORN an ideal planning tool for operations like OMFTS. THORN can take non-
traditional geographic data, like the output of a discrete event smulation, and placeit in a

context that facilitates analysis. Its ability to fuse data as layers can allow OMFTS

[_ THIFH
[in Mavigate Coshol Lews Help

- ['3\ Gk 290,10

]
Ll i

Sl alon Conlnits

Lt om 36 G065 - 179 T8 - w G461

M= E

Mronze Rivde

& Madpabon Gesiaies Mo

Figure 2 THORN Display

planners to isolate relevant information to assist in the exploitation of the opposition’s
current posture.

THORN is ill in the development phase and will be continually improved based
on empirical studies and subject matter expertise. THORN was developed by leveraging
open source software, namely OpenMap™. This initial design, version 1.0, is the focus of
this study. A usability test was conducted on THORN to evaluate human performance
and user preferences. This test also identifies usability issues that focus on future design

and redesign efforts.

C. PROBLEM STATEMENT

As previoudly discussed current military planning systems tend not to be flexible,
extensible, or easlly configured. More importantly, few military planning systems
incorporate usability design practices during initial development. This thesis addresses
those problems. Specifically the thesis:

* develops a Graphica Information System that incorporates a discrete
event smulation,
» performs baseline usability analysis on the system,
* provides a proof of concept for the development of a functional, highly
usable military software-planning tool.
Additionally, the thesis attempts to predict the effectiveness of an interface design by
analyzing demographic data.

D. OUTLINE OF THE THESIS

This thesis develops a graphical movement simulation that allows the analyst to
visualize the effects of the movement of forces and other data on a geographical display.
To avoid the reliance on close, proprietary systems, the software developed in this thesis
is built using open source software.

The thesis is organized as follows. Chapter Il provides an overview of OMFTS,
GIS, usahility, and usability metrics. This information is provided as a means of
familiarization to the challenges associated with producing a usable tool for working with

and analyzing geo-referenced data. Chapter 111 details the software architecture of the
OpenMap™ system and provides an overview of the additions required to incorporate a
discrete event layer, and simulation interface. Chapter |11 also details al user interface
components. Chapter 1V details the experimental design of the usability testing
experiment, and provides the results of the experiment, and Chapter V summarizes the

research, and makes recommendations for future works.

II. BACKGROUND

A. OVERVIEW

Modern software design is trangtioning from large, resource-intensive
applications, to programs that run on a hand-held computer or desktop machine. As
computational power increases, software size and resource demand has decreased. The
development of large monolithic solutions has given way to a loosely-coupled suite of
smaller modular applications. The Internet revolution has fueled this transition. It is no
longer acceptable to produce applications that isolate the user. Information must be
shared, and successful applications must foster this sharing effort. Constraints on time to
market and the notion of “internet time” — (the speed at which changes propagate on the
internet), demands that information be shared in order to succeed.

Internet time has also forced application designers to produce products that have
very small learning curves. Users must be able to achieve sustained peak levels of
efficiency quickly, in order for the application to succeed in a competitive marketplace.
Small, flexible, efficient, and highly usable applications are the modern software ideal.
Current DoD simulation systems are the antithesis of the modern software ideal.

DoD has correctly identified the need for simulation systems that can be used
jointly. The lack of fiscal resources, the shrinking size of the US military, and the
increase in US military obligations demand systems that are capable of sharing
information between all forces. The defense department should not select a complex,
large, and singular software solution to address this need. They should not choose a
system that attempts to address all military planning needs from strategic planning to low
intensity conflict. This would be akin to using a 100-pound pipe wrench for al plumbing
needs. If the user can configure the application to run in his environment, he must also
learn a host of commands that may not be germane to the task.

An additional difficulty in the singular approach is to design an interface for the
system that is as equally usable to the soldier in the field as the analyst on the flag
officer’s staff. Given a “one system approach”, it is not possible to produce a usable
interface for all needs. Software needs to be made more usable, and usability engineering

reguires testing. The participants in the evaluation must be the targeted end-users of the
application. The target end-users of the simulation system are every leader in all four US
military forces. This interface must be equally usable to US Navy Surface Warfare
officers and US Army artillery officers.

Java™ is the language of the Internet, and can be run on the majority of
computers available today. These two technologies, Java and the Internet, enable
simulation system developers to create small powerful components and test them on the
specific group of end-users. These smaller components can then act as building blocks for
larger more complex systems, creating a modular design. This modular design alows
developers to add or remove components as necessary to update technology without
having to redesign the entire system.

The Internet Revolution has changed the way the magjority of industries conduct
business. The major industries have adapted their practices to embrace this new approach
to software design. That is the mgjority of industries save one, the DoD. The DoD should
take advantage of the changes that are taking place globally. The “one-size-fits-all”
solution is not feasible. The following section provides an overview of OMFTS by way
of example. The planning tool used in the creation of this example was THORN.

10

B. OMFTSEXAMPLE

In this illustrative example naval expeditionary forces (NEF) respond to the
littoral conflict on the western coast of North America. From the line of debarkation
(LOD) the force moves to the departure point (DP). In Phase I, shown in, objectives at
littoral penetration areas (LPA), San Francisco, Monterey, and San Diego can be struck.
The choice of the LPA will be based on vulnerability. The opposing force must protect all
LPAs and has exposed himself to deception: a feint attack on a LPA would divert

attention from the true objective.

E THINAM A=
Fle Masgate Corliol Liyers L
Ssrmilaten Canlisls Miousa Moo
;5; g\ R 2.8 100 600] m [= iy atioe CeFlles PO
"i -
e;f 7 [LPASE
NEF OBJ
LA
!

LPA MTY
NEF OBJ

NEF OBJ k
C .

L 51 ST ALY . (PR

Figure3Phase| OMFTS

11

o Do o i

LPP1

Ll L (ORI 1L P - e (L3S (IITT]

Figure4 Phasell OMFTS

Phase 11, shown in Figure 4, begins with an attack on Monterey, advance
operations and real-time reconnaissance identify exploitable littoral penetration points
(LPP) through which forces maneuver to overwhelm enemy defenses. The attack
transitions from ship to objective without a lengthy buildup of beachheads.

As detailed in V2010, the war fighter of the future will rely on the use of
computer systems to assist in the fight. One such system that could be used in the
planning of OMFTS operations is a Geographic Information System, which is discussed

in the following section.

C. GIS

A Geographic Information System (GIS) is a computer system capable of
assembling, storing, manipulating, and displaying geographically referenced information,

12

that is, data identified according to their locations. Practitioners sometimes include data
such as operating personnel in a GIS. A GIS is both a database with specific capabilities
for gpatially referenced data, as well as a set of operations for manipulating and analyzing
the data. (Star and Estes, 1990).

A GIS stores information about the world as a collection of related layers that can
be linked together by geography. This smple, but extremely powerful and versatile
concept has proven invaluable for analyzing many real-world problems, such as tracking
delivery vehicles, recording details of planning applications, and modeling global
atmospheric circulation.

Geographic information may explicitly reference a geographic location, such as a
latitude and longitude or national grid coordinate, or it may implicitly refer to such
locations as an address, postal code, census tract name, forest stand identifier, or road
name. An automated process called geocoding is used to create explicit geographic
references (multiple locations) from implicit references (descriptions such as addresses).
These geographic references alow the location features, (such as a business or forest
stand), and events, (such as an earthquake, on the earth's surface) to be analyzed.

Geographic information systems work with two fundamentally different types of
geographic display models--the "vector® model and the "raster” model. In the vector
model, information about points, lines, and polygons is encoded and stored as a collection
of x,y coordinates. The location of a point feature, such as a borehole, can be described
by a single x,y coordinate. Linear features, such as roads and rivers, can be stored as a
collection of point coordinates. Polygonal features, such as saes territories and river
catchments, can be stored as a closed loop of coordinates. The vector model is extremely
useful for describing discrete features, but less so for describing continuously varying
features such as soil type or accessibility costs for hospitals. A raster image comprises a
collection of grid cells rather like a scanned map or picture. The raster model has evolved
to model such continuous features. Modern GISs are able to handle both models.

OMFTS planners could use the features of the modern GIS to look for flaws in
the existing infrastructure and exploit them. For example, if the traffic flow along 1-95
routinely bottlenecks between LPP6 and LPP4 (from figure 4), then it would be
worthwhile to conduct a feint to LPP6. This feint would cause the opposition to mass

13

forces to defend LPP6. Once the opposition discovered the true LPP, the bottleneck
would prevent the rapid redeployment of forces. While simplistic in nature, this type of
infrastructure information provided by a GIS coupled with force location data can
provide significant opportunities to exploit inherent opposition weaknesses. The GIS
application must present this information to the user in an interface that is unambiguous
and intuitive. This interface must posses a high level of usahility, which is now described.

D. USABILITY

Usahility means that the people who use the product are able to do so quickly and
easily to accomplish their own tasks (Dumas and Redish, 1994). Usability Engineering is
a systematic approach to usability based on four essential points:

1. Focus on users.

2. People utilize products to be productive.

3. People have limited time to accomplish tasks.

4. Users decide when a product is easy to use.

Usability is concerned with the overall utility of the application. Usability should
not only be considered an issue for the primary system functionality, but should also be
applied to training materials, help packages, and other associated features of the system.
In order to improve the ease-of-use of a product, usability should be considered
throughout the development of a system, from initial design through final deployment of
the system. Dumas and Redish (1994) provide seven principles for ensuring usability:

1. Engineering it into a product through iterative design and development process.

2. Involving users throughout the process.

3. Allowing usability and users needsto drive design decisions.

4. Working in teams that include skilled usability specialists, interface designers,
and technical communicators.

5. Setting quantitative usability goals early in the process.

6. Testing products for usability, but also integrating usability testing with other
methods for ensuring usability.

7. Being committed to making technology work for people.

14

The integration of usability into a product is commonly called “usability
engineering”, (Good, 1988; Whiteside, Bennett, and Holtzblatt, 1987). Usability
engineering, similar to software engineering, includes identifying users, analyzing tasks,
setting specifications, developing and testing prototypes, and the iterative cycles of
development and testing (Dumas and Redish, 1994). Gould and Lewis (1985) highlight
four principles to facilitate designing usability into products.

1. Focus early and continuously on users.

2. Integrate consideration of all aspects of usability.

3. Test versions with users early and continuoudly.

4. |terate the design.

| dentifying usability requirements prior to design can save time and money for the
designer as well as increase the likelihood of user satisfaction with the product. Systems
are developed to help individuals accomplish a task. In order to provide a usable system,
what the individual needs and how they are to accomplish this must be ascertained. The
primary requirement is to understand the prospective users and the audience for a system.
Sumas and Redish (1994) have identified techniques that can be used in a usability
engineering process. These techniques highlight the importance of describing what a
person does in their job in terms of tasks. When the tasks are analyzed, how the person
does the job, can do the job, or should do the job are described (Drury, Paramore, Van
Cott, Grey and Corelett, 1987). Task analysis will determine whether the correct
measurements are performed during the usability analysis.

The aforementioned usability principles are embodied in Shneiderman’s (1997)
eight “golden rules’ of interface design to maximize usability. These are:

1. strive for consistency
. enable frequent users to use shortcuts
. offer informative feedback
. design dialogs to yield closure
. offer error prevention and simple error handling
permit easy reversal of actions
. support internal locus of control

© N O U~ W N

. reduce short-term memory load

15

These eight rules provide a foundation for ensuring usability. Complex systems
being developed in support of technical strategies, such as Information Superiority, must
incorporate these principles from the onset of development. These usability design
principles are critical elements of software applications that support activities like
OMFTS. THORN is being developed to provide a foundation application utilizing these
principles. The long-term objective is to provide a methodology and baseline for the
development of similar systems to support OMFTS, and to ensure that the product
remains efficient, effective, and usable.

The OMFTS dstrategy provides a unique usability challenge. OMFTS requires that
users be able to interact with information without it. For example, planners must be able
to annotate the display, or highlight areas on the map. Planners must also be able to
obtain information from any simulations that may be running in the display. These tasks
must be accomplished in a manner that is efficient and prevents the user from
inadvertently permanently changing the underlying maps. The application must be able to
discriminate the user’s desires based on mouse actions and map content alone. Clicking
on a simulated unit should provide an output of the unit’s disposition, without changing
the simulation. While clicking and dragging on the display should draw an annotation
object, it should not permanently alter any of the topological information displayed.
Mission planners must be able to quickly asses force disposition, both friendly and
opposition, and indicate or highlight tactically significant topological information. The
application must provide a highly efficient, usable means of accomplishing these tasks.
The level of application efficiency can be determined using usability metrics, which are
discussed next.

E. USABILITY METRICS

Usability metrics are measurable performance observations that can be used as
indicators of an applications’ usability. Care must be exercised when selecting metrics to
ensure that the chosen metric is an appropriate indicator of usability. The selection of
these metrics obviously depends on the goals of the research. In the case of exploratory
studies designed to find the source of difficulties and errors, it is best to observe
performance in a relevant task in a rather free and open-ended way, and to talk to the

16

users (Hix, 1996). From such naturalistic observations the researcher might proceed to a
classification or taxonomy of the acts and errors that can be reliably observed, and that
occupy users time. The next step would be to count the number of failures of each kind
over a sample of performance, and/or measure the times required to perform actions or

complete subtasks.

F. SIMKIT

As previoudly stated THORN can display discrete event smulations as layers.
The following provides the fundamental components of a discrete event smulation and
discusses Simkit, the smulation package used by THORN.

There are two fundamental components of a discrete event simulation model
(Buss, 1996). These are a set of state variables and a set of events. The discrete event
model replicates the modeled systems behavior by producing state trajectories, or time
plots, of the values of the modeled system’s state variables. Measures of performance are
determined as statistics of these state trgjectories. Discrete event smulations are
characterized by state trgjectories that are piecewise constant. That is, events only occur
at discrete moments in time when the value of at least one state variable changes. These
events are instantaneous; no simulated time passes when an event occurs. Simulated time
passes only between the occurrences of events.

The timing of the occurrence of eventsis controlled by a mechanism called an
Event List. Thisissimply alisting of future events that have been scheduled. Whenit is
time for a scheduled event to occur an event notice is generated. The event notice is
comprised of two pieces of information: the event being scheduled, and the time at which
the event isto occur. This process of scheduling future events, and executing them
continues until there are no more eventsto execute. As discussed earlier, THORN uses a
simulation package called Simkit to manage the events displayed in the discrete event
layer. Simkit is described next.

The Operations Research Curriculum at the Naval Postgraduate School (NPS)
uses a Java-based discrete event simulation package, called Simkit. Simkit allows rapid
development of discrete event smulation models (Buss & Stork, 1996). This tool

provides the foundation for the movement simulation utilized in the evaluation of

17

THORN. The relationship of THORN, Simkit and OpenMap™ is as follows: Simkit
produces purely non-visual simulation output; OpenMap™ displays GIS data as layers;
and THORN converts Simkit output into OpenMap™ layer data and provides interactive
simulation controls. A detailed description of OpenMap™ and the THORN discrete event
layer is provided next.

18

1. MODEL FEATURES

This thesis developed a GlS/graphical movement simulation, which allows the
analyst to visualize the effects of the movement of forces on a geographical display. It
then tested the usability of the system in the context of a movement simulation. Without
the display, the smulation outputs a long list of unit locations, which is not inherently
user-friendly. Without visudization of the locations of the individual units involved in
the simulation the results cannot easily be verified or used. When this location data is
fused with data in a GIS, the results of this smulation can be easily seen, analyzed, and
verified, by planners and analysts. A loose coupling of components allows the movement
smulation to be written independently of the map display.

The software model and architecture for this thesis is organized in the following
manner:

1. A purely non-visual movement simulation which uses Simkit,

2. A geographical map display tool, capable of showing geographically related
data on a map display.

As mentioned previoudly, the graphical display part of THORN is built on
OpenMap™, an open source display tool.

19

A. OPENMAP™

Lm er API

F.xlsrlng
Diata %lr\:ﬁ

I'_F'ﬂ1ﬂ H.'Eﬂ

Figure5 OpenMap™ Architecture Overview

OpenMap™ is a Java Beans™ based toolkit for building applications and applets
needing geographic information. OpenMap™ components allow access to data from
legacy applications in-place in a distributed setting. The Swing components in
OpenMap™ understand geographic coordinates, help display map data, and help handle
user input events to manipulate that data. The maps consist of graphical objects that can
react to user inputs. The layers are Java Swing components that are totally responsible for
drawing themselves as part of a greater whole map. Java Swing handles the layering of
graphics from multiple layers. The independence of the layers gives them great leeway on
how they can access their data source and create their graphics for the map. Layers can
act as clients, creating graphics from data received from a server, or smply displaying
graphics acquired from a server. They can also create graphics from internal algorithms.

The OpenMap™ architecture has the mechanism to dispatch mouse and keyboard
events to Layers that want to receive them. Each Layer has the capability to change a
graphic's appearance, add or delete graphics, or provide more information about a
graphic. The graphic's information can be displayed, via the Information Delegator, in a
Web browser, atext line section, or a pop-up window. At the heart of the architecture is
the MapBean. The MapBean is a Swing component that is a map window. To define

20

what the map should look like, the MapBean needs a Projection. The Projection has a
scale, a center latitude and longitude, a window pixel height and width, and a projection
type. All of these attributes work towards describing the map in the MapBean window.

To place graphics on the map, layers need to be added to the MapBean. Layers
create graphics from a data source and are notified when any attribute of the MapBean's
projection is changed. They are expected to modify their list of graphics according to the
parameters of the projection, pass the projection to the graphics so they draw themselves,
and finally pass the Java Graphics (received in the layer's paint method) object to the
graphics so they can draw themselves into it. The layers control how and (approximately)
when their contributions to the map are drawn.

1. Components

Murar Baads

Figure 6 MapBean Architecture
a) MapBean

The MapBean, shown in Figure 6, is a Java Swing component
that represents a map window. It holds a reference to the projection
object, which is the description of how the map should be drawn
(latitude/longitude location, scale, projection type, pixel height and
width of the map). The MapBean is aso the parent class to the layer
objects, which act as child components to the MapBean.

21

Ll L i

The map can be changed by modifying the projection that the
MapBean has or by changing the layers that are contained within the
MapBean. The layers listen for any changes to the projection in the
MapBean, update their graphics accordingly, and then redraw
themselves.

b) Projections

OpenMap™ has Mercator, Orthographic, and Gnomic
projections, as defined by the USGS Projection Manual 1932. There is
aso a CADRG projection, an Albers Equal Arc projection that is
compliant with the pixel spacing defined in NIMA's Raster Product
Format (RPF) specification. Finally there isasimple XY projection.

OpenMap™ projections are able to do more than forward and
inverse trandations - they are capable of defining these functions for
different shape types, attempting to resolve some of the ambiguities of
drawing these graphics on a globe. The Projection interface allows
users read-only access to the current MapBean projection. The
MapBean updates all the Layers and other ProjectionListeners when
the view changes. A Projection object is defined with:

Latitude and longitude of the center point of the MapBean canvas
Scale

Height and width of the MapBean canvas

Projection type (Mercator, Orthographic, etc)

FELERIU A 5 - NP LA - e (15T

Figure 7 Statuslights

22

c) Information Delegator

The Information Delgator is the object that directs messages to
the user. It controls input to the text line at the bottom of the map, and
has the ability to bring up a message window or a web browser to
provide more information to the user. It listens to the layers that are
active within the MapBean, and can display status lights, shown in
Figure 7, (images) for each layer which indicate whether the layer is
working on it's contribution to the map. The status lights are only
functional if the layer is sending status updates to the Information
Delegator.

—

Opentap (fm)

Control Lavers Help

File Navigate
ol] |

CEICQICN
A= =

200,000,000 Mouse Mode

i Mavigation) Gestures () None

Figure 8 OpenMap™ Viewer Application

23

2. GUI

The OpenMap™ Viewer application starts with a map of the Earth with

a 10° graticule, Figure 8. The following user interface items are available,

Figure 9:
File MNavigate Control Lavers Help
Figure 9 OpenMap™ Menu bar
a) Menu ltems Eile | Navic
About [
Quit

Figure 10 File menu item

(1) File. There are two menu items contained here, Figure 10. The
About item provides information about the underlying OpenMap
software, and tk [Navigate | Lay s the map application.

Coordinates..
Projection

foom In

Figure 11 Navigate menu item

(2) Navigate Menu. Menu items found under the Navigate menu,
Figure 11, are: the Coordinates item which present a Reposition map

24

dialog; Projection which alows the user to set the map display
projection; and the Zoom In/ Zoom Out controls which zoom the map
by the specified amount.

Control |Laver5

Mouse Mode »
Redraw

Figure 12 Control menu item

(3) Control Menu. The Control Menu, Figure 12, has two items.
Mouse Mode... which changes the mouse behavior in the following
manner. Navigate alows you to move around on the map. Gestures
passes mouse events through to layers, and None ignores all mouse

clicks. The Redraw redraws the map.

Layers |ﬂe|p
¥ Test

I Shape Political
[VPF Political

¥ Graticule

Edit Layers...

Figure 13 Layers menu item

(4) Layer Menu. The layer menu ,Figure 13, is where the user
defined map layers are manipulated. It is arranged by the relative
position of the layer in the display. The layer display status is
controlled by selection of the check box. The Edit Layers item brings
up the layer editor window.

25

|ﬂeln |

;| OpenMap |

Figure 14 Help menu item

(5 Help Menu, Figure 14, contains a single menu item that will
bring up help documents in a user specified web browser.

% % 57,110,904 Mouse Mode
i - i Navigation) Gestures [None

Figure 15 OpenMap'™ tool bar

M=
0
i i

=i

b) Toolbar Items

The following items can be found on the toolbar, Figure 15:
Rosette, the rosette pans the map in the specified direction and the middle
button recenters the view to the starting point; Magnifying Glass, “ +”
Zooms in 2X over the center of the map “-*“ Zooms out 2X over the center
of the map; Scale Entry alows the user to enter the scale of the map;
Mouse Mode, Changes the mouse behavior.

26

o (Layers =1~

9 Date & Time

9 Recent Earthquakes

9 Day/Night Shading

Q Graticule
Q Palitical Salid

|| = e

Figure 16 Layer editor palette

c) Layer Editor window

The layer editor window, Figure 16, uses the following icons to
manipulate layers in the display: g QTurn layer off/on; @@ turn layer
palette (GUI) controls off/on; ﬁ move selected layer to top of map; ﬁ'
move selected layer up one level in map; '[1 move selected layer down one

level in map; Q?’ move selected layer to bottom of map.

27

[1Go To Coordinates

DMS | Dec Deg |

-Decimal Degrees
Latitude: |
Longitude: |

| Apply | Close

Figure 17 Coordinates editor window

d) Coordinates Window

The Coordinates Window, Figure 17, is used to specify coordinates
in decimal degrees or degrees, minuets and seconds (DMS). Once the data
is entered the user clicks apply and the map will be recentered over the
position indicated.

3. Discrete Event Layer

THORN s the result of modifying the OpenMap application’s event messaging
algorithm to incorporate a animated discrete event layer. The discrete event layer (DEL)
developed for THORN utilizes the a Model-View-Controller (MVC) paradigm to separate
the simulation and display components. The MVC paradigm is an approach to
programming that separates data input, data processing, and data output in such a way
that either the input or the output can be modified without having any impact on the
processing, see Figure 18.

28

user input

Figure 18 Model View Controller paradigm

THORN'’S implementation of the MVC paradigm is as follows. the model is a
discrete event simulation utilizing Simkit; the view is a geo-referenced icon representing
the position of the system smulated in the model; the controller is a Simkit’s mover
manager that adjudicates model movement. In this arrangement the model has no
interaction with the external view. This encapsulation allows a single view to display
many models simultaneously. The benefit gained in this single view arrangement is the
ability to have models developed orthogonally interact visually.

The DEL was implemented as a Layer Bean. It utilizes the OpenMap event-
passing paradigm to communicate with the non-visual Simkit. The simulation is
configured to manage entities whose maneuvering characteristics have been modeled
utilizing Simkit’s mover manager. The positions of the entities are then communicated to
DEL via a Java runtime event. This position data is then geo-referenced and displayed in
the DEL. THORN is capable of displaying and animating any Simkit entity. The visual
representation of the entity is completely user configurable.

29

B. OMFTS SCENARIO

A very smple OMFTS scenario involving two battalion size forces was
developed to evaluate the THORN interface. The scenario was designed to exercise
THORN, and was not intended to illustrate all the features OMFTS. The Blue Force has
made an amphibious landing and is using the existing road network to engage the
opposition. The opposing force Red Force has been mobilized and will attempt to deploy
and interdict the Blue Force. Two separate discrete event simulations model the force
movement characteristics used in this scenario, each with its own set of movement rules.
The Blue Forces are constrained to use the existing transportation network as a means of
movement. The Red Forces have no constraints on movement networks, but must move

in the genera direction of the landing force.

Task

1 | “Turnonthe DTED Layer”

2 | “Turn on the Blue Force Layer”

3 | “Turn on the Red Force Layer”

4 | “Change mouse to gesture mode’

5 | “What isthe elevation of the Blue Force”

6 | “What isthe elevation of the Red Force”

7 | “Turn off the DTED Layer”

8 | “Turn off the Blue Force Layer”

9 | “Turn off the Red Force Layer”

10 | “Change mouse mode to navigation”

11 | “Zoom the map in to 1:50,000”

12 | “Locate the Naval Postgraduate School”

13 | “Turn on the Draw Tools Layer”

14 | “Select the Draw Tools palette tool”

15 | “Draw red arectangle around the Naval Postgraduate School. Use Lat1: 36.95784 &
Longl: -121.87584; Lat 2: 36.59676 & Long2: -121.87309”

16 | “Fill the rectangle with a white fill color”

17 | “Close the rectangle tool window”

18 | “Place atext label, with the caption Naval Postgraduate School at Lat: 36.95784 &
Long: -121.87584"

19 | “Close al Draw Tools palettes”

20 | “Zoom out to 1:250,000.”

21 | “Turn on the Blue Force Layer”

Figure 19 Scenario task script

30

Fused with the forces positional data is elevation data obtained from Digital
Terrain and Elevation Data (DTED), vector maps, and raster maps displayed as
appropriate. The DTED are not used in the computations for the movement of forces, but
since the discrete event model is just a component in this overall smulation system, these

data could be dynamically fed to the model for use.

[
e Havipss Cenlidl Lawds Hep =
T P _-'-g-:‘g_g\-!-nm H]
e - T O T
'S = B e
B9 s SANTA oz At [ey R
5% i ER [l RU e
B e .-"..1' " J&n i l_..f
)&'\ | :'__.'“IFJ £
o | & R I
1] | !"' o [L ’—;.ji: -._:_._._.
¢ | B L
= B Woara
Ty S fboege sy
\ el
~285BW%, {3
;'-'"l'-_ i , “_..,..'-I-..I..-:.
A i ¥
N By A A S e
s K. FR | PeTTR e ;
L TR, TR iy R TN
| it | s | B | gt | S | i | e | it | v | Tive | v | gCs | 5 (e 14788

Figure 20 Scenario start

The task scenario begins with the application configured as seen in Figure 20. The
user is shown a small-scale view of the Monterey peninsula in THORN’S main viewer
application, and in a separate window al of the available layers are presented. Once the
participant has oriented himself, he is instructed to turn on additional data layers and

rescale the display.

31

=
M Peviges (el LaweE e

M Sl il ——

_.II._E_EJ}E.;‘_ W m | ™ | vigEion ® Ganiges e
A=

o L

R mey

G o

T E e 5

T E) g Shuseg

T E nees e T

R

(£ W

Py Fpia

CANREL J4
AANEL AWER

T
ADE BERGT

122700

Figure 21 Scenario middle phase

As seen in Figure 21, the next set of exercise tasks involved interacting with the
available information. In this case the participant queried the Blue force icon and is
presented with tactical information gathered from the GIS. In this instance elevation data
for the units are provided by a digital terrain elevation data (DTED) layer. The DTED
information is also used in a shading algorithm that provides additional visua cues for
elevation. If this information were not available the simulation would continue
unhindered.

The next set of tasks involves annotating the display. These tasks require the user
to locate and annotate landmark data on the display as shown in Figure 22. THORN treats
the user’s annotations as an additional semi-transparent layer. It updates the display and
fuses the annotation with the original map data without destroying the underlying features
of the map. This feature is extremely important and could not be done with traditional
maps. Since the annotations are also geo-referenced the user could locate different map

32

data and use it with the existing annotations, or the user could simply print the current
map, for distribution to the landing forces.

OB rwdFroes L : AT T
BN ey e . . | - A
- T Lk ' i -
DR e - e AP =
L T [e
09 mum P ™ MONTEREY
] i L WONTIRE Y : '
u h TATE MERCLL =, T i T
il o WEET AR s gDy Memic 3 "—,-, i |
& - 14 -.'-I 4) ' I Tr-._-'_. g ‘l iy 0 E =l
et - - }.
S i i | .
= |'- = = 1-"_.
S J. '\l':r" i
. =% \
i
W5 | Qe | W | figric | o | Spen | oy | Fuc | e | ppie | v | sme | g | am fea 11

Figure 22 Annotation task

The final set of tasks, shown in Figure 23, involves the observation of a running
discrete event simulation. Participants are tasked with starting the smulation and making
observations of the activity that follows. This task evaluates the participant’s ability to
visually analyze the discrete event model. The model constrains the movement
characteristics of the forces. The Blue Force must travel along the highway, while the
Red forces are constrained to the Fort Ord operating area. The user can control the
simulation by using smulation controls found on the toolbar, which start, pause, and
restart the smulation. These commands are small subset of the capahility of the model. It
is important to note that the task scenario has the user complete a type of task before

starting another. This single task execution scheme is not a limitation of the application.

33

Annotation, navigation, and query can be performed at any time, even while the
simulation is running. The task scenario does not exercise this capability in an effort to
avoid unnecessary confusion. The experiment methodology and results are discussed in

W] [| |

éﬁr iy

L J"‘...'.I E -y TR

Figure 23 Scenario observation phase

the next chapter.

V. METHODOLOGY AND RESULTS

This chapter provides detail on the experimental design used in the evaluation of
THORN'S usability. It also tests the hypothesis as to whether participant demographics
are indicators of how well users can identify icons’ functions.

A. RESEARCH APPROACH

This study involved the analysis of THORN. The purpose of this analysis was to
assess the effect of the interface on the user and to identify any specific problems with the
system.

Instrument. This study provides a benchmark across usability objectives. A
usability task script and post-task questionnaire were administered to al subjects. The
usability objectives of the overall study were:

* 90% Successful completion of tasks.

* 90% Error freerate.

* 90% score of 3 or better on a 7 point scale (e.g., 1=easy, 3=somewhat
easy, 5=somewhat difficult, and 7=difficult) in ease-of-use.

Ideally, by the time an analytical system is released to the fleet, these objectives should
be met and/or exceeded in order for the system to meet high ease-of use standards.

Procedure: participants completed an informed consent form and demographic
guestionnaire (Appendix A and B). The participants also received a usability task script
aong with a brief verbal description of the evaluation scenario (Appendix D).
Participants sat directly in front of a 21-inch computer display monitor and controlled
THORN with a computer mouse. The beginning of the usability evaluation consisted of
the participants responding to a series of questions concerning their demographic
background (Appendix C). Participants were then directed to read aloud and execute the
tasks outlined in the task script. Following each task, questions concerning the usability
of the THORN system were presented. Questions concerning participant satisfaction as
well as current understanding of the THORN system were also presented.

35

Throughout each usability session, measurements were taken while the user

performed tasks. These measurements were used to assess whether or not each usability

objective had been met. These measurements were:

Task Completion Rate: the proportion of participants who complete the
task successfully and independently without critical errors. A critical error
has occurred when the participant either requests assistance from the
usability engineer or commits an uncorrected error that results in an
incorrect outcome for the task.

Error Free Rate: the proportion of participants completing the tasks
without any errors, critical or non-critical. Non-critical errors include any
error corrected by the test participant without intervention by the usability
engineer or an eror left uncorrected, but which does not affect the
correctness of the outcome of the task.

User Satisfaction: The User Satisfaction rating is derived from a series of
questions which the user rates on a 7-point scale, ranging from very
dissatisfied to very satisfied. The questions solicit user opinions with
regard to ease-of-use, simplicity of the human-computer interaction, and
system functionality.

B. DATA ANALYSIS

The occurrence of each of the measurements listed above was recorded in a
spreadsheet. These data included any associated user-feedback information associated

with the measurement. Frequencies of the various measurements in the database were

determined, both in aggregate and by measurement type. The categorization of

participants by experience level and whether they had previously used mapping tools was

used in presenting the results. However, due to small sample size and no noticeable

differences between categories, al subsequent analysis was performed on all participants

as asingle group.

36

The results of this usability evaluation are presented in the same order they were
collected. The participant’s demographic backgrounds are presented first, next are the
participant’s task completion rates, and finally the participant task satisfaction scores.

C. EFFECT OF PARTICIPANT DEMOGRAPHICS

Thirteen participants were used in the evauation of THORN. The average
participant’s age was 32.5. All participants were male United States military officersin a
postgraduate degree program. All participants possessed 20-20 correctable vision, and
were physically able to operate the THORN application. It was hoped that the
demographic survey would yield a model capable of indicating a participant’s
expectation of the function of a button by its icon. It was hypothesized that the
participant’s age, average time per session of computer use, and total number of hours per
week spent on a computer would give insight in determining user expectations. However,
this hypothesis could not be fully tested due to the homogeneity of the subject’s
demography.

As users spend more time on computers they develop expectations of toolbar
icon function. For example, a button with a printer icon on a toolbar is assumed to be a
shortcut for accessing the print command. As Schniderman states in rule two of the eight
golden rules of interface design to maximize usability: enable frequent users to use
shortcuts. The regression model is therefore:

Score = f3 ot B1-Length+ Bo-Session + B3-Years

Figure 24 Abstract regression model

In this model Score is an indication of how well the icon indicates the application
function, it is the frequency at which the user correctly identified button function by icon;
Length is the average amount of time a user spends in front of a computer per session;
Session is the number of times a person uses the computer each day; and Y ears the total

number of years the participant has used a computer. These predictors were chosen since

37

they are a quantitative indication of the exposure the participant has had to computers.
The assumption being, exposure to icons is proportiona to the ability to discern the

function represented.

Coefficient Estimates

Labe Estimate Std. Error t-value p-value R Squared: 0.385713
Constant 1.13568 0.133733 8.492 0.0000 Sigma hat: 0.0438716
AGE -0.00300208 0.00385963-0.778 0.4517 Number of cases. 16

LENGTH -0.000848667 0.000453119 -1.873 0.0856 Degrees of freedom: 12

SESS -0.0127264 0.0110397 -1.153 0.2714

Summary Analysis of Variance Table

Source af SS MS F p-vaue

Regresson 3 0.0145024 0.00483414 251 0.1081

Residual 12 0.0230966 0.00192472

Lack of fit 11 0.0190466 0.00173151 0.43 0.8456

PureError 1 0.00405 0.00405

Figure 25 Regression Coefficients and Statistics

As shown in Figure 25, the regression was not statistically significant. This may
be explained by the nature of the sample. The participants had very similar demographic
data. The small sample size may have had an adverse effect as well.

Another explanation of the regression results may be that the demographic
variables used in the regression model are smply not good predictors of an individual’s
ability to discern the functiondity of THORN'S icons. This explanation can be
substantiated by near homogenous computer literacy found in the participants of study.
Computers have become so prevalent in the work place that the average participant could
operate a computer efficiently, and could accomplish basic GIS tasks with ease even if he
had never previously operated GIS software.

As stated in Sniderman’s eight golden rules of interface design, usability can be
maximized if the interface is targeted for a specific user group. The regression results
seem to indicate that demographic data may not be a predictor of user expectation of
button function based on icon, and cannot be used to match the interface to the user in

this case. If this is the case, the results may mean that computer literacy and

38

pervasiveness have reached a level such that the mgjority of users can operate “industry
standard” interfaces. The results may also indicate that interfaces that follow standard
usability practices have a broader potential target audience. If this is indeed the case, then
the results are more promising than a cursory analysis may reveal. In any case the results

merit further research and data collection.

D. INITIAL IMPRESSIONS

Overadl, participant’s first impressions of the THORN interface were positive.
Participants generally found THORN to be a familiar interface that contained more
information than they were accustomed to in mapping systems, namely the inclusion of
simulation controls. In addition, participants stated that their initial impresson of the
THORN interface was that it had a “standard” appearance; it used icon symbols that were
commonly seen in software applications. Participants generally understood that the layer
palette could be used to manipulate the contents of the viewer, and the scale indicator
provided an indication of relative area coverage. Three participants did not know that
they could manipulate the map scale by typing in values as well as using the zoom
toolbar buttons. Generally participants figured out the navigation methodology, but two

users never utilized the ability to center the map by clicking on it.

39

E. TASK COMPLETION

Once data was gathered on the participant’s initial impressions of THORN and its
components, a series of tasks (see Appendix C), in the form of a scenario, Figure 19,

Mean User Statisfaction by Task

6.00 6.09 6.09 6.09

5.82 5.82 5.82 — — 5.82 g

— = — 555 564

5.55 —

4.45
427 4.36

4.09 —

373
3.64 bl 3.64
3.45 —

291 —

Task

Figure 26 Mean User Satisfactions by Task

were presented. The task scenario contained four types of tasks: (1) layer display, which
involved including and removing particular layers from the viewer; (2) layer interaction,
tasks which required the user to query the layer for information or annotate a particular
data point on the layer; (3) layer navigation, which involved navigating the layers to
locate map information, and (4) general purpose tasks which are tasks required by all
operating system GUIs. Task completion rates for all task types exceeded evaluation
objectives. These rates were 91%, 100%, 97%, and 100% respectively. All evaluation
participants completed these series of tasks without committing a critical error.

F. USER SATISFACTION

40

As seen in Figure 26, THORN meets the user satisfaction criteria of 90% score of
3 or better on a 7-point scale (e.g., 1=easy, 3=somewhat easy, 5=somewhat difficult, and
7=difficult) in ease-of-use. However if these data are compared with task completion
rates, additional inferences can be made. The task group with the lowest task completion
rate corresponds to the group of tasks with the highest user satisfaction scores. Tasks 1-3,
7-9, 21-22 are layer display tasks. The relatively low task completion rate can be
attributed to initial user unfamiliarity with the THORN interface and layer concept. As
shown in Figure 26, user satisfaction for this group of tasks is consistently higher than all
other task groups. THORN provides redundant methods for accomplishing layer display
tasks. It uses a menu based list of layers that can be turned on an off by simply selecting
the desired layer, or the user can control layers by using the layer editor window, seenin
Figure 16. By providing multiple means of accomplishing this task THORN can appeal to
alarger number of users.

Task group (3) had the next highest user satisfaction rate. This group of tasks

Mh—lmﬂ—..lﬂd
=il
— Hidads - o EEETR NS
L H m 2] = Msagaiwn Gavwsy Hora
Cacin
¥ Bk =7 T £ i 7 T
rawd
- ("L _:' = 1
iy)
Lirm =
Laflmn - Ean I‘Ef -
iyt i
™ |
[T hal
- JrT—— |}
s 1
Leles - i 4 8
I [T
Lwlg = vt = 1 .-|. I o R) R - H
Py |
Lallem = reT -
o
3
[E
| 4 | 7 1]
o
-
‘2 £ ym i -
SEASIDI
"B AL MY w20 | |
:.sn.u|_lyuu-rrn:.:| T e ool | _-iessovalis Dix |E:mn:-.. | o rsresi | v Lo | s Teak Pul [t - Lot | BT

Figure 27 Annotation window

41

dealt with navigating the display and was exercised in tasks nhumbers 11 and 12. Once
again THORN allows multiple ways for users to complete these tasks and achieved high
satisfaction scores for task 12. Users could move to different locations by using the
compass rosette found on the toolbar, or by clicking a location on the map, which causes
THORN to re-center the map on the clicked location. Task 11 had a relatively low user
satisfaction score, and this can be attributed to the implementation of the scale function.
The current interface implementation does not give users the impression that they can
type in a desired scale. This matter is further exasperated by the functionality of the zoom
buttons. These buttons simply multiply or divide the value found in the scale window by
a factor of two. So in some cases, the use of the buttons alone to scale the display to a
desired level is not possible, i.e. desred scae is not a multiple of two. This
implementation caused initia frustration.

Task groups (2) and (4) had perfect completion rates. Only task group (3) will be
addressed here, since task group (4) is comprised of tasks implemented by the operating
system and not THORN. Task group (3) is made up of tasks 5, and 6. It asked the user to
interact with the display by querying units for information. THORN met the usability
objective for these tasks but there is room for improvement. In order to interact with an
icon the user must change to gesture mode, and click in the upper left corner of the icon.
Participants routinely clicked in the center of the icon. While minor, correcting THORN
to address the participant expectation could greatly increase satisfaction. Task 15
provided the largest potential for improvement. Its user satisfaction indicates a need for
redesign. Task 15 asks the user to annotate a region on the map. The difficulty stems
from the manner in which the annotation is performed. The user is required to manually
enter coordinates into fields that detail the dimensions of the annotation, see Figure 27.
This is an area for immediate attention in future versons of THORN. The current
implementation is not consistent with the other elements of the interface, and is a
potential source of data entry error. This type of error is very hard to locate and resolve.
The following chapter summarizes the work, and provides recommendations for future

work.

42

V. SUMMARY AND RECOMMENDATIONS

A. SUMMARY

THORN was developed to address some the shortcomings of current DoD
smulation applications and to provide an OMFTS mission-planning tool. It allows users
to visualy analyze, verify, and validate information obtained from a discrete event
smulation, and it was designed with usability in mind. This thesis evaluated THORN'S
graphical user interface (GUI), and provided a baseline for future work. Specifically this
thesis evaluated whether THORN'’ S interface meets the following usability standards:

* 90% Successful completion of tasks.

* 90% Error freerate.

* 90% score of 3 or better on a 7 point scale (e.g., 1=easy, 3=somewhat
easy, 5=somewhat difficult, and 7=difficult) in ease-of-use.

The goals defined at the onset of this thesis were to produce a quality easy-to-use
graphic user interface (GUI) for map-based mission planning and to conduct a usability
test to determine its design success. As desired, THORN'S GUI evauated favorably. It
met or exceeded all evaluation objectives. However, there is room for improvement.
Specifically, the annotation interface should be more consistent and interactive.

THORN successfully combines many of the proven tools from GIS software into
a streamlined design while incorporating the strong design points of Human Factors
guidelines. With continued GUI improvement and testing, THORN can grow to become a
powerful and portable map-based mission-planning tool for OMFTS.

B. RECOMMENDATIONS

While THORN'S interface proved to be useful, there are areas that can be
improved upon. Map annotation should be implemented in the same way drawing
applications perform the draw task. THORN’S interface development should continue in
a modular fashion. This modular development will alow the incorporation of new
interface technologies without requiring complete interface redesign. As THORN'S

43

interface matures, periodic evaluations should be performed and compared against this
benchmark to ensure THORN remains a valuable, and usable analytical tool.

Every attempt should be made to assemble demographic data that will provide
good predictors of user expectation. Although the analysis in the study showed
demographics had no significant impact on icon identification, more extensive studies
may identify good demographic indicators. The next demographic survey should focus on
the types of applications participants use, and use this data as predictors. As computers
become more prevaent in the military work place, users will develop expectations of
button function. Interface design should address this expectation by providing
consistency across applications. It is not acceptable to redefine industry standard
symbology.

Usahility has to be incorporated from the beginning of the development process.
The applications have to be small, flexible, extensible, and efficient. They must be
capable of doing one task extremely well and sharing the results with everyone. These
applications must be developed in Internet-time. If the application produces the solution
one second late in a tactical environment, it has the same effect as if the application
produced no solution at all. The compressed timeline of conflict and the rapid spread of
the threat to US forces leave a very small margin for error.

APPENDIX A: CONSENT FORM

CONSENT FORM
Usahility Evaluation of the THORN

Principal Investigator: LT Patrick Mack
Computer Science Department
Naval Postgraduate School
Monterey, Ca 93943

[, , consent to my participation in the research project titled
Usahility Evaluation of THORN.

| understand that | am free to withdraw my participation in the research at any time and
that if | do I will not be subjected to any penalty of discriminatory treatment.

| have been given to opportunity to as questions about the research and received
satisfactory answers.

| understand that any information or personal details gathered in the course of this
research about me are confidential and that neither my name nor any other identifying
information will be used or published without my written permission.

| understand that if | have any complaints or concerns about this research | can contact:
Arnold Buss
Operations Research Department
831-656-3259

Signed by:

Date

45

THISPAGE INTENTIONALLY LEFT BLANK

46

APPENDIX B: THORN SUBJECT QUESTIONNAIRE

1. What isyour age? (20-25) (25-30) (30-35) (>35)
2. Mdeor Femae? M F

3. Occupation?

4. If military, what rank and branch?

5. Highest Grade Completed?

12 Assoc. BA/BS MA/MS MD/Ph.D.

6. Whichisyour dominate hand? Left Right

7. Areyou currently experiencing any problems that impair your ability to use a
computer?

a) Yes b) No

If yes, what are they?

8. How many times do you use a computer a week? 1-5 510 10-15 >15
9. What is your most common computing session length?
<10min 10-30min 30-60 min 60-90min >90min
10. How many sessions of this type do you have a day?
a)

b)

c)
d)
€)

vV AOWNPE

47

11.

Which of the following applications do you most often use on a daily basis? (circle as

many as necessary)

12.

13.

14.

15.

16.

a) Send/ Receive e-mail
b) Surf the Internet

¢) Word Processing

d) Finances

€) Spreadsheets

f) Games

g) Presentations

h) Programming

i) Other

What operating system do you primarily use? (circle more than one if needed)

a) Windows 9X, NT, 2K
b) Mac
c) Linux
d) Unix

How many years have you been actively using a computer?

a <1

b) 1-3

c) 35

d) 59

e) >10yrs.

Have you used map-based software? (commercial, military, Internet, etc.)

a) Yes
b) No

Are you geographically familiar with the Monterey Peninsula?

a) Yes
b) No

What is your attitude toward computer use?
a) Postive

b) Indifferent
c) Negative

48

APPENDIX C: THORN DATA COLLECTION SHEET

PART 1: ICONOGRAPHY

“What do you think the functions of the following icons are?

pointer, arrow, mouse control
move up/N

move NE
move right/E
move SE
move down/S
move SW
move left/W
move NW
center
zoomin

zoom out

layer not loaded
layer not available
layer loaded

stop

pause

play

layer on

layer off

palette on

palette off

move layer to bottom
move layer down one

@kﬁ&é&l@Lﬂ::l-L- ﬁpﬁf Alvju| 2 WM w5

49

PART 2: MAP MANIPULATION & INTERACTION

Function Tested Task Completed | Incomplete | Assistance
() () Required
(Y/N)

Layer Menu “Turn on the DTED Layer”

Layer Menu “Turn on the Blue Force Layer”

Layer Menu “Turn on the Red Force Layer”

Mouse Mode “Change mouse to gesture mode’

Interact “What is the elevation of the Blue
Force’

Interact “What is the eevation of the Red
Force’

Layer Menu “Turn off the DTED Layer”

Layer Menu “Turn off the Blue Force Layer”

Layer Menu “Turn off the Red Force Layer”

Mouse Mode “Change mouse mode to navigation”

Zoom In “Zoom the map in to 1:50,000"

Interact “Locate the Naval Postgraduate
School”

Layer Menu “Turn on the Draw Tools Layer”

Layers Palette “Select the Draw Tools pal ette tool”

Layers Palette “Draw red arectangle around the
Naval Postgraduate School. Use Lat1.:
36.95784 & Longl: -121.87584; Lat
2: 36.59676 & Long2: -121.87309"

Layers Palette “Fill the rectangle with a whitefill
color”

Layers Palette “Close the rectangle tool window”

Layers Palette “Place atext label, with the caption
Naval Postgraduate School at Lat:
36.95784 & Long: -121.87584"

Layers Palette “Close all Draw Tools palettes”

Zoom “Zoom out to 1:250,000.”

Layer Menu “Turn on the Blue Force Layer”

Layer Menu “Turn on the Red Force Layer”

Interact “Observe the behavior of the entities’

Interact “Describe this behavior in the space

provided below. Note movement
characteristics and number of
entities.”

50

APPENDIX D: FOLLOW-UPICON RECOGNITION TEST

THORN v1.0a Usability Test Data Collection Sheet

Part Two

In two or three words, what do you think the functions of the following icons are?

Icon Answer

(it .DéDﬁJGZJﬂ:I -Lﬁpﬁf Alva2Wr |5

51

THISPAGE INTENTIONALLY LEFT BLANK

52

APPENDIX E: JAVA IMPLEMENTATIO OF A DISCRETE EVENT LAYER IN

THORN

1) DesLayer — Implements discrete event simulation in THORN

2) Deslcon — Class used to display user depiction of unit icon

3) Generic Action — Implements event passing structure for animating events
4) PingEvent — Message passing paradigm for communication between objects
5) Layer — Generic GIS layer class

This appendix contains source code listings for the discrete event layer portion of

THORN. Only source code critical to the development of the discrete event layer is
presented here. The remaining source code is available upon request.

53

[ITitle: DeslLayer

/] Ver si on: 1.0

/] Copyright: Copyright (c) Pat Mack
/I Aut hor : Pat Mack

/ | Conpany:

/Il Description: Discrete Event Sinulation Layer for OpenMap

i mport java.awt. Col or;

i mport java.awt.event.*;
i mport java.aw . Poi nt;

i mport java.awt.*;

i mport java.lang.refl ect. Constructor
i mport java.util.*;

i mport javax.sw ng. Box;

i mport javax.sw ng.|con;

i mport javax.sw ng. | nagel con;

i mport javax.sw ng.event.*;

i mport javax.sw ng.*;

i mport sinkit.*;

i mport sinkit.snd. *;

i mport com bbn. openmap. Lat LonPoi nt ;

i nport com bbn. opennap. Layer;

i mport com bbn. openmap. | ayer. dt ed. DTEDCacheManager
i mport com bbn. opennap. event . *;

i nport com bbn. opennmap. util.*;

i mport com bbn. openmap. on&r aphi cs. *;

i nport com bbn. opennap. proj . *;

i mport com bbn. openmap. event . Proj ecti onEvent ;

i mport Pi ngSupport;

i mport PingLi stener;

*

Layer that displays discrete event sinulation
This Layer is a PingAble (ActionListener) object so that it can be
pronpted by a SinEvent. This |ayer understands the
foll owi ng properties:

<code><pre>

display icon as a Java | nagel con

des. i con=Mover. gi f

display highlight icon as a Java | nagel con
des. si con=sMover. gi f

#Ref to type of Mover that will be displayed
des. nmover =si nki t . snd. Basi chMbver

#Ref to Mover Manager

des. nover Manager =Randoniocat i onManger

#Nurer of entities to create

des. numvbver s=1

#lnitial Location of Mover

des. | at Locati on=

des. | onLocati on=

#Vel ocity of Mover

des. vel oci t y=. 0005

<p>

L T R A N N N N N N N N N

In addition to the previous properties, you can get this layer to

work with the OpenMap vi ewer

by addi ng/editing the additional

properties in your <code>openmap.properties</code> file:
<code><pre>

| ayers

opennap. | ayers=des ...

cl ass

nane

dat e. prettyNanme=Di screte Event

</ pre></ code>
NOTE: the col or

JDK 1.1...
/

public class DeslLayer extends Layer

*
*
*
*
*
*
*
* des. cl ass=DeslLayer
*
*
*
*
*
*

Si nEvent Li st ener, MapMouselLi st ener

{ //used to determ ne
/lprivate static final

/1 property keys

transi
transi
transi
transi
transi
transi

transi

transi

public final static

public final static

public final static

public final static

public final static

public final static
". nover Man";

public final static
" nunivbvers";

public final static
" vel Mover";

/1 default properties

private Properties myProps

private String nyPrefix =

private String iconString = "Mver.gif";

private Imagelcon icon = n
| magel con(DesLayer. cl ass. get Resource(iconString).getFile());

private String slconString = "shMver.gif";

private | magelcon slcon =
| magel con(DesLayer. cl ass. get Resource(slconString).getFile());

private String
private String
private double

private doubl e iLat

private double

private double iLon

private double
private doubl e

private i
private i

nt
nt

i Lat Doubl e

ent
ent
ent
ent
ent
ent

ent

ent

Layer

Stri
Stri
Stri
Stri
Stri
Stri

Stri

Stri

= null;

ew

new

= i Lat Doubl €;
= -97.10992;
= i LonDoubl e;

= . 0005;

i LonDoubl e

i Vel Doubl e
vel ocity = i Vel Doubl e;

i Numvbverlnt =

nunmvbvers = i Nunmvbver | nt;

private Properties props;

1

ng
ng
ng
ng
ng
ng

ng

ng

properties do not support al pha value if running on

i mpl emrent s

doubl e DELTA = 0. 015;

i conProperty = ".icon";

sel I conProperty = ".slcon";
nover Property = ".nover",
nmLat Property = ". | at Mover";
nmLonProperty = ".l onMover";

nover ManPr operty =
nunmvbver sProperty =

vel Mover Property =

nover Cl assString = "sinkit.snd. Basi cMover"”;
manCl assString = "Randoniocati onMover Manager " ;
= 31.57251;

privat e DTEDCacheManager dtedDel egator = null;

55

private Mver theMover;

//remaining fixed properties
private OMX aphicLi st noverLi st;
private OMZ aphicList |inelList;
private Vector entities;

private Projection proj;

private PingSupport pingDel egator
public DesLayer() {

noverLi st = new OMa aphi cLi st ();

i neLi st = new OM aphi cList();

Schedul e. set Ver bose(f al se);

Pi ngThr ead2. PT. addSi nEvent Li st ener (t hi s);

public void updatePosition() {

i nt numvbvers = noverlList.size();
fireStatusUpdat e(Layer St at usEvent . START WORKI NG) ;

[ineList.clear();
for (int i = 0;i < numvbvers ; i++) {
((Desl con) nover Li st. get OM& aphi cAt (i)). updat ePosition();
Desl con tenp = (Deslcon)noverList. get OMa aphi cAt (i) ;
Lat LonPoi nt nPos = tenp. get MoverLocation();
Lat LonPoi nt vPos = tenp. getVirtual Location();

}

if(proj !'= null){
((OM& aphi cLi st) nmover Li st). project((Projection)proj, true);
}

repaint();
fireStatusUpdat e(Layer St at usEvent. FI NI SH WORKI NG) ;
}

/**

* Here's where | hear the Ping event and update ny entities.
**/

public void processSi nEvent (Si mEvent e) {
if (e.getEventNane().equals("Ping")) {
t hi s. updat ePosi tion();
}

}

56

e

/**

* Renders the graphics list. It is inportant to make this
* routine as fast as possible since it is called frequently
* by Swing, and the User Interface blocks while painting is
* done.

*/

public void paint(java.aw .G aphics g) {

i f(lineList.size() > 0){
i neList.render(g);
}

nover Li st. render (Q);
fireStatusUpdat e(Layer St at usEvent. FI NI SH WORKI NG) ;

}

public void setProperties(String prefix, Properties theProps){

Constructor NewMover[] = null;
Construct or NewMover Man[] = null;
Mover tenp = null;

SinEntityBase temp2 = null;

props = theProps;

String tenpProps = props. getProperty("openmap.|ayers");
String[] paths = new String[tenpProps.length()];
int count = O;
StringTokeni zer token = new StringTokeni zer (tenpProps);
whi | e(t oken. hasMor eEl emrent s()) {
i f(token. nextEl enment().equal s("jdted")){
StringTokeni zer dtedPaths = new
StringTokeni zer (props. get Property("j dted. paths"));
whi | e(dt edPat hs. hasMor eEl enent s()) {
pat hs[count] =dt edPat hs. next Token() ;
count ++;

}
dt edDel egat or = new DTEDCacheManager (pat hs) ;

}
super. set Properties(prefix, props);
iconString = props. getProperty(prefix+i conProperty,iconString);
slconString =
props. get Property(prefix+sellconProperty, slconString);
i Lat Doubl e = Doubl e. par seDoubl e(

props. get Property(prefix+niat Property, Doubl e.toString(iLat Double)));
i LonDoubl e = Doubl e. par seDoubl e(

props. get Property(prefix+monProperty, Doubl e.toString(i LonDouble)));

57

i Vel Doubl e = Doubl e. par seDoubl e(
pr ops.

get Property(prefix+vel Mover Property, Doubl e.toString(i Vel Doubl e)));
i NumVover |l nt = Integer. parselnt(

props. get Property(prefix+numvbver sProperty, | nteger.toString(i Nunivbverln
t)));

nover Cl assString = props.
get Property(prefix+mover Property, noverd assString);
manCl assString = props.

get Property(prefix+mover ManProperty, nanCl assStri ng);

oject[] args = {new Coordi nat e(i Lat Doubl e, i LonDoubl e)
, new Doubl e(i Vel Doubl e) };

try{
for(int i = 0;i < iNumVoverlnt; i++){

NewMover =
Cl ass. for Nane(nover C assString) . get Constructors();

NewMbver Man =
O ass. forName(mand assString). get Constructors();

tenp = (Mover) makeOne(NewMbver, args) ;

ohject[] args2 = {tenp};
tenp2 =(SinEntityBase) makeOne(NewMbver Man, ar gs2);

i con = new

| magel con(DesLayer. cl ass. get Resource(iconString).getFile());
slcon = new

| magel con(DesLayer. cl ass. get Resource(slconString).getFile());

Desl con tenplcon = new Deslcon(icon, (Basi cMover)tenp);
nover Li st. add(t enpl con);

}
}catch (d assNot FoundException e){
Systemout.println("C ass not found exception" + e);
b .
t hi s. updat ePosi tion();
}
private Object nakeOne(Constructor[] cons, Cbject[] args){
ohject tenp = null;
for(int j=0;j < cons.length;j++){

i f(this.isConstructor(cons[j].getParaneterTypes(), args)){

58

try{

tenp = (SinEntityBase) cons[j].new nstance(args);
conti nue;

}catch(l nstantiati onException h){

Systemout.println("Instantialtion exception" +
h);

f){

exception" + f);

}catch(java.l ang.refl ect. | nvocationTarget Excepti on
Systemout. println("lInvocation target

Systemout.println("Construtor: " + cons[j]

Systemout.println("Argunments: " + args[0])
}catch(l11 egal AccessException g){

Systemout.printin("lllegal Acces Exception" +

} ;

9);
}

el se{
/1 Systemout.println("Des Layer");
/1 Systemout.println("No valid constructor");
}
}
return tenp;

}
private bool ean i sConstructor(C ass[] parans, Object[] args){
int counter =1;
i f(parans.length == args.|ength){
for(int i =0; i < params.length ; i++){
/1 Systemout.println(parans[i] + " " +
args[i].getd ass());
if(parans[i].equals(args[i])){
count er ++;

else if(paranms[i].isPrimtive()){
if (params[i].equal s(Float.TYPE)) {

count er ++;

Y /I if

if (params[i].equal s(Integer.TYPE)) {
count er ++;

Y /I if

if (params[i].equal s(Double.TYPE)) {
count er ++;

Y /I if

if (parans[i].equal s(Long. TYPE)) {
count er ++;

Y /1 if

if (paranms[i].equal s(Bool ean. TYPE)) {

count er ++;

Y /Il if

if (parans[i].equal s(Byte. TYPE)) ({
count er ++;

Y /Il if

if (params[i].equal s(Short.TYPE)) {
count er ++;

Y /Il if

if (parans[i].equal s(Character.TYPE)) {

59

count er ++;

Y o/l if
Y O/l if
Y/ I for
Yif
el se{

return fal se;

}

/1 Systemout.println("isConstructor returned:" + (counter ==
params. | ength));

return(counter == parans.|ength);
}
N R e R E T
/1 ProjectionListener interface inplenmentation
R R R LR R
/**

* Handl er for <code>ProjectionEvent</code>s. This function is
* invoked when the <code>MapBean</ code> projection changes. The
* graphics are reprojected and then the Layer is repainted.
* <p>
* @arame the projection event
*/
public void projectionChanged(Projecti onEvent e) {

proj = e.getProjection();

/1 Systemout.println("CGot projection change");

((OM& aphi cLi st) nmoverLi st). project(e.getProjection(), true);

repaint();

}
e e T R
/1 NMbuse Events
e R T R
/**

* Returns self as the <code>MapMuseli stener</code> in order

* to receive <code>MapMouseEvent </code>s. |f the inplenmentation

* would prefer to del egate <code>MapMouseEvent </ code>s, it could

* return the delegate fromthis method instead.

* @eturn MapMouselistener this

*

~

publ i c MapMuseli st ener get MapMouseli st ener () {
return this;
}

60

*

Return a list of the nodes that are interesting to the
MapMouselLi stener. The source MouseEvents will only get sent to
t he MapMouseListener if the node is set to one that the
listener is interested in.
Layers interested in receiving events should register for
receiving events in "select" node.
<code>
<pre>

return new String[1] {

Sel ect MouseMode. nodel D
1

</ pre>

<code>

@ee NavMbuseMde#nodel D
@ee Sel ect MouseMde#nodel D
@ee Nul | MouseMbde#nodel D

L I S I R N S R N .

~

public String[] get MouseModeServi celList() {
return new String[] {
Sel ect MouseMode. nodel D
1

}
/**
* | nvoked when a nouse button has been pressed on a conponent.
* @aram e MuseEvent
* @eturn true if the |istener was able to process the event.
*/
publ i ¢ bool ean nousePressed(MouseEvent e) {
i f (Debug. debuggi ng("Di screteLayer")) {
Systemout.println("Di scretelLayer. nousePressed()");
}

return true;

}
/**
* | nvoked when a nouse button has been rel eased on a conponent.
* @aram e MuseEvent
* @eturn true if the |istener was able to process the event.
*/
publ i c bool ean nobuseRel eased(MouseEvent e) {
i f (Debug. debuggi ng("Dragged")) {
Systemout. println("Di scretelLayer. nouseRel eased()");
}

/*
i f(drag)({
dr ag=f al se

int count =0;

Point p = e.getPoint();

Lat LonPoint latlon = proj.inverse(p);

Coordi nate pl =

new Coordi nate(l atlon. getlLatitude(),!|atlon.getLongitude());

for (Enunmeration f = entities.elenents();
f. hasMoreEl ements();) {

61

Mover nextMover = (Mover) f.nextEl enent();
i f(next Mover.isSel ected()){
((Mover)entities. el enent At (count)). nmoveTo(pl);

el se{
count ++;
}

}
}
*/
return true

}
/**

* | nvoked when the nouse has been clicked on a conponent.
* The listener will receive this event if it successfully

* processed <code>nmousePressed()</code>, or if no other I|istener
* processes the event. |If the listener successfully processes
* moused icked(), then it will receive the next noused icked()
* notifications that have a click count greater than one.
* @aram e Museli stener MuseEvent to handl e.
* @eturn true if the |istener was able to process the event.
*/
publ i c bool ean noused i cked(MouseEvent e) {

int index =

nover Li st. fi ndl ndexOf C osest (e. get X(), e. get Y(), 0. 0005f) ;
if(index == -1){ //nothing sel ected

return fal se;

}

Desl con tenpl con
bool ean sel ect ed

(Desl con) nmover Li st. get OM& aphi cAt (i ndex) ;
tenpl con. i sSel ected();

updat ePosi tion();
i f(selected){

((OVRast er) nover Li st. get OMa aphi cAt (i ndex)). set | magel con(icon);
((Desl con) nover Li st . get OMa aphi cAt (i ndex)) . changeSel ect () ;
}else if(!selected){

((OVRast er) nmover Li st. get OM& aphi cAt (i ndex)) . set | magel con(sl con);
((Desl con) nover Li st. get OMa aphi cAt (i ndex)) . changeSel ect () ;
}

JPopupMenu info = new JPopupMenu();
JLabel | at Header new JLabel ("Latitude: ");
JLabel | onHeader new JLabel ("Longi tude: ");
JLabel vel ocityHeader = new JLabel ("Velocity: ");
JLabel el evHeader = new JLabel ("Elev: ");
Fl oat tenmpf = new

Fl oat (t enpl con. get Mover Locati on().getLatitude());
String tenp = tenpf.toString();
JLabel lat = new JLabel (temp);
t enpf = new Fl oat (t enpl con. get Mover Locati on(). get Longi tude());
tenp = tenpf.toString();
JLabel 1on = new JLabel (tenmp);
t enpf = new Fl oat (t enpl con. get Mover (). get Speed()) ;

62

tenp = tenpf.toString();
JLabel vel = new JLabel (tenmp);
JLabel el ev;
tenmpf = new Fl oat (dt edDel egat or

get El evati on(t enpl con. get Mover Locati on().getLatitude(),
t enpl con. get Mover Locati on() . get Longi tude()));

tenp = tenpf.toString();

i f(tenpf.floatValue() == -500f){

el ev = new JLabel ("NA");
}

el se{
el ev = new JLabel (tenp);
}

i nfo. set Layout (new Gri dBagLayout ());

Gi dBagConstraints ¢ = new GidBagConstraints();
c.gridy = 0;

i nf o. add(| at Header, c) ;

i nfo.add(lat,c);

C.gridy++;

i nf o. add(| onHeader, c);

i nfo.add(lon,c);

C.gridy++;

i nf o. add(vel oci t yHeader, c);

i nfo.add(vel,c);

C.gridy++;

i nf o. add(el evHeader, c);

i nfo.add(el ev, c);

i nfo. show e. get Conponent (), e.get X(), e.getY());

return true;

}
/**

* | nvoked when the nbuse enters a comnponent.
* @aram e Museli stener MuseEvent to handl e.
*/
public voi d nouseEnt ered(MuseEvent e) {
i f (Debug. debuggi ng("Di screteLayer")) {
Systemout.println("D scretelLayer. nouseEntered()");
}

}
/**

* I nvoked when the nouse exits a conponent.
* @aram e Museli stener MuseEvent to handl e.
*/
public voi d nouseExited(MuseEvent e) {
i f (Debug. debuggi ng("Di screteLayer")) {
Systemout.println("D scretelLayer. mouseExited()");
}

}

/1 Mouse Motion Listener events
[HETETErrr i ririrrrin

/**

* | nvoked when a nouse button is pressed on a conponent and then

63

dragged. The listener will receive these events if it
successfully processes nousePressed(), or if no other I|istener
processes the event.

@ar am e MouseMoti onLi st ener MouseEvent to handl e.

@eturn true if the listener was able to process the event.

/

publ i c bool ean nouseDragged(MouseEvent e) {

* 0% o F X %

i f (Debug. debuggi ng("Dragged")) {
Systemout. println("Di scretelLayer. nouseDragged()");

i nt index = noverList.findl ndexOrd osest (e.getX(),e.getY());
Desl con tenplcon = (Deslcon)noverList. get OMa aphi cAt (i ndex);
tenpl con. setVirtual Location(e.getX(), e.getY());

return true;

}
/**

* | nvoked when the nouse button has been noved on a conponent
* (with no buttons no down).

* @aram e Museli stener MuseEvent to handl e.

* @eturn true if the |istener was able to process the event.
*/
publ i c bool ean nobuseMved(MouseEvent e) {

i f (Debug. debuggi ng("Di screteLayer")) {

Systemout.println("Di scretelLayer. mouseMved()");

}

return true;
}
/**

* Handl e a nouse cursor noving w thout the button being pressed.
* This event is intended to tell the listener that there was a
* mouse novenent, but that the event was consunmed by anot her

* layer. This will allow a nouse listener to clean up actions
* that mi ght have happened because of another notion event

* response.

*/

public void nouseMoved() ({
i f (Debug. debuggi ng("Di screteLayer")) {
Systemout. println("D scretelLayer. nouseMved()[alt]");
}

}

65

[/ Title: Desl con

/] Ver si on: 1.0

/] Copyright: Copyright (c) Pat Mack
/I Aut hor : Pat Mack

/ | Conpany:

/Il Description: Discrete Event Sinulation Layer for OpenMap

i mport java.awt. Col or;

i mport java.awt.event.*;

i mport com bbn. opennap. event . *;

i mport javax.sw ng.*;

i mport sinkit.snd. *;

i mport com bbn. openmap. o aphi cs. OVRast er ;
i mport com bbn. openmap. Lat LonPoi nt ;

i nport com bbn. opennmap. util.*;

public class Deslcon extends OVRaster {
private static final Color selectColor = new Col or (0. 0f, 1. 0f, 0. 0f);
private Basi cMover vehicle;
private bool ean sel ect ed;
private LatLonPoint virtual Locati on;
private LatLonPoi nt noverLocation;

public Deslcon() {
vehi cl e = new Basi cMover (new Coordi nate(), 0);
sel ected = fal se;
thi s. set Sel ect Col or (sel ect Col or);
nover Locati on = new Lat LonPoi nt (0. Of, 0. Of) ;
virtual Locati on = noverLocati on;

public Deslcon(lnmagel con inage){
super (0. Of , 0. Of , i mage) ;
vehi cl e = new Basi cMover (new Coordi nate(), 0);
sel ected = fal se;
nover Locati on = new Lat LonPoi nt (0. Of, 0. Of) ;
virtual Locati on = noverLocati on;

publ i c Desl con(Ilnagel con inmage, Basi cMover nover)({
super ((fl oat) nover. get Current Locati on(). get XCoor d(),
(fl oat)nover. get CurrentLocation().getYCoord(), inmage);
vehi cl e = nover;
selected = fal se;
nover Location = this.getMverlLocation();
virtual Locati on nover Locat i on;
virtual Locati on nover Locat i on;

}
public bool ean isSel ected(){return sel ected;}
public void changeSel ect (){sel ected = !sel ected;}

public void setVirtual Location(float x, float y){
virtual Locati on = new Lat LonPoi nt (X, Yy);
}

66

public LatLonPoint getVirtual Location(){return virtual Location;}
publ i c Basi cMover get Mover(){return vehicle;}
public LatLonPoi nt get MoverLocati on(){
return new
Lat LonPoi nt ((fl oat)vehi cl e. get Current Locati on() . get XCoord(),
(fl oat)vehicle.getCurrentLocation().getYCoord());
}

public Deslcon updatePosition(){
float xposition =
(fl oat)vehicle.getCurrentLocation().getXCoord();
float yposition =
(fl oat)vehicle.getCurrentLocation().getYCoord();
this. setLat (xposition);
this. setLon(yposition);
return this;

67

[/ Title: CGeneri cActi on

/] Ver si on: 1.0

/] Copyright: Copyright (c) Pat Mack
/I Aut hor : Pat Mack & Arnold Buss
/ | Conpany:

/Il Description: Discrete Event Message Center

i mport javax.sw ng.*;
i mport java.awt.event.*;
i mport java.lang.reflect.*;

public class GenericAction extends AbstractAction {
private Object target;
private Method nethod;

public GenericAction (Cbject theTarget, String nethodNanme) {
super (makeMenuNane(net hodNane)) ;
target = theTarget;
try {
net hod = target.getd ass().get Met hod(et hodNanme, null);

}
cat ch(NoSuchMet hodException e) {
Systemerr.printlin(e); e.printStackTrace(Systemerr);
t hr ow new
I'1'l egal Argunent Excepti on(theTarget.getd ass().get Nane() +
" does not contain nmethod " + nethodNane + "()");
}

}

public GenericAction (Cbject theTarget, String nethodNane, |con
icon) {
super (makeMenuNane(net hodNane), icon);
target = theTarget;
try {
nmet hod = target.getd ass().get Met hod(et hodNanme, null);

}
cat ch(NoSuchMet hodException e) ({
Systemerr.printlin(e); e.printStackTrace(Systemerr);
t hr ow new
I'1'l egal Argunent Excepti on(theTarget.getd ass().get Nanme() +
" does not contain nethod " + nethodNane + "()");
}

}

public GenericAction (Cbject theTarget, String nethodNane, |con
i con,
String tipText) {
super (makeMenuNane(net hodNane), icon);
target = theTarget;
t hi s. put Val ue(Acti on. SHORT _DESCRI PTI ON, tipText);
try {
nmet hod = target.getd ass().get Met hod(et hodNanme, null);

}
cat ch(NoSuchMet hodException e) ({
Systemerr.printlin(e); e.printStackTrace(Systemerr);

68

t hr ow new
1l egal Argunent Excepti on(theTarget.getd ass().get Nane() +
" does not contain nethod " + nmethodName + "()");
}

}

public GenericAction (Cbject theTarget, Method t heMethod) ({
t hi s(theTarget, makeMenuNare(t heMet hod. get Nane()));
}

public void actionPerfornmed(ActionEvent event) {

try {
net hod. i nvoke(target, null);

catch(111 egal AccessException e) {
Systemerr.printlin(e); e.printStackTrace(Systemerr);

catch(111 egal Argunent Exception e) {
Systemerr.printlin(e); e.printStackTrace(Systemerr);

catch(I nvocati onTarget Exception e) {
Systemerr.println(e.getTarget Exception());
e. get Target Exception(). print StackTrace(Systemerr);

}

public static String nmakeMenuNane(String nanme) ({

if (name.endsWth(" ")) {
nane = name. substring(0, nane.length() - 1);
name += "...";

}

nane = nane.replace(' ', ' ');

char[] chars = nane.toCharArray();

chars[0] = Character.toUpperCase(chars[0]);

return new String(chars);

69

[ITitle: Pi ngEvent

/] Ver si on: 1.0

/] Copyright: Copyright (c) Pat Mack
/I Aut hor : Pat Mack & Arnold Buss
/ | Conpany:

/Il Description: Discrete Event Sinulation Layer for OpenMap

/**
* An event to request that the sinulation start or stop
*
*/
public class PingEvent extends java.util.Event Qbject
i mpl enents java.io.Serializable
{

public transient static final int START = 1;

public transient static final int STOP = O;

/1 public transient static final PingT
/**

* The type of ping.

*/

protected int type;

/**
* Construct a PingEvent.
* @aram source the creator of the PingEvent.
* @aramtype the type of the event, refering to howto use the
anount .
*
*/
public PingEvent (Object source, int type)
{
super (source);
switch (type) {

case START:
case STOP:
br eak;
defaul t:
throw new |11 egal Argunent Exception("Invalid type: " +
type);
}
this.type = type
}
/**

* Check if the type is START.
* @eturn bool ean

*/

publ i c bool ean i SSTART ()

{
return (type == START);

70

}
/**

* Check if the type is STOPR.
* @eturn bool ean

*/
public bool ean i sSTOP ()
{
return (type == STOP);
}
/**

* Stringify the object.
* @eturn String

*/

public String toString ()

{

return new String("#<Pi ngnEvent " +

(isSTOP() ? "Start " : "") +
(i SSTART() ? "Stop " : "") +
II>II ;

}

71

[ITitle: Pi ngLi st ener

/] Ver si on: 1.0

/] Copyright: Copyright (c) Pat Mack
/I Aut hor : Pat Mack & Arnold Buss
/ | Conpany:

/Il Description: Discrete Event Sinulation Layer for OpenMap

/**
* Listens for requests to ping the sinulation.
*/
public interface PingListener extends java.util.EventListener

{
}

public void ping (PingEvent evt);

72

[ITitle: Pi ngSupport

/] Ver si on: 1.0

/] Copyright: Copyright (c) Pat Mack
/I Aut hor : Pat Mack & Arnold Buss
/ | Conpany:

/Il Description: Discrete Event Sinulation Layer for OpenMap

i mport java.io.Serializable;

i mport java.io.CbjectQutputStrean
i mport java.io.ObjectlnputStream
i mport java.io. | OException;

/**

* This is a utility class that can be used by beans that need support
* for handling Zoonlisteners and firing ZoonEvents. You can use an
* instance of this class as a nenber field of your bean and del egate
* work to it.

*/

public class PingSupport inplenments java.io.Serializable {

/**

* Construct a PingSupport.
* @ar am sour ceBean The bean to be given as the source for any
events.
*/
publ i c PingSupport (oject sourceBean) {
source = sourceBean
}

/**

* Add a PingSupport to the listener list.
* @aramlistener The Zoonli stener to be added

*/
publ i c synchroni zed voi d addPi ngLi st ener (Pi ngLi stener |istener) ({
if (listeners == null) {
listeners = new java.util.Vector();
}
i steners. addEl enent (1 i stener);
}
/**

* Renove a Zoonlistener fromthe listener |ist.

* @aramlistener The Zoonli stener to be renoved

*/

publ i c synchroni zed void renovePi ngLi st ener (Pi ngLi stener |istener)

if (listeners == null) {
return;
}

i steners.renoveEl enent (listener);

}

73

/**

* Send a zoomevent to all registered |isteners.

* @aram zooniType Either ZoonEvent.RELATI VE or ZoonEvent. ABSOLUTE

* @aram anount The new scale if ABSCLUTE, the nultiplier if
RELATI VE

*/

public void firePing(int PingType) {

if (! ((PingType == PingEvent. START) |
(PingType == Pi ngEvent.STOP))) {
t hrow new ||| egal Argunment Exception("Bad val ue, " + PingType +
" for PingType in " +
"Pi ngSupport.firePing()");
}

java.util.Vector targets;
synchroni zed (this) {
if (listeners == null) {
return,
}

targets = (java.util.Vector) listeners.clone();

}

Pi ngEvent evt = new Pi ngEvent (source, PingType);

for (int i =0; i <targets.size(); i++) {
Pi ngLi stener target = (PingListener)targets.el enentAt(i);
target. pi ng(evt);

private void witeObject(ObjectQutputStreams) throws | OException {
s.defaul tWiteQbject();

java.util.Vector v = null
synchroni zed (this) {
if (listeners !'=null) {
v = (java.util.Vector) listeners.clone();
}

}

if (v!=null) {
for(int i = 0; i <v.size(); i++) {
Pi ngLi stener | = (PingListener)v.elementAt(i);
if (I instanceof Serializable) {
s.witeject(l);
}

}

s.witeoject(null);

private void readObj ect (ojectlnput Stream s) throws
Cl assNot FoundExcepti on, | CException {
s. def aul t ReadObj ect () ;

74

ohject listenerOrNull;
while(null '= (listenerONull = s.readject())) {
addPi ngLi stener ((Pi ngLi stener)listenerOrNull);
}
}

transient private java.util.Vector |isteners;
private Object source;
private int pingSupportSerializedDataVersion = 1;

75

/**

* This is an exanple of sinple "behavior". This MyverManager is
responsi bl e

* for directing a single Mowver. The behavior is that a random
location is

* chosen in a rectangle deternmined by the instance variabl es
| oner Left and

* upperRi ght, then the Mwver is directed to proceed to that |ocation
Upon

* —arrival, another random point is chosen and the Mver directed to
t hat .

*

* @ut hor Pat Mack

**/

i mport java.util.Vector;

i mport java.util.Enuneration
i mport sinkit.*;

i mport sinkit.data.*;

i mport sinkit.snd. *;

import sinkit.util.*;

public class Bl ueForceMwver Manger extends SinEntityBase {

private static int |ocation;

private static final int NUM MOVES=7

private static final double[] lat =
{36.612328, 36. 61471, 36. 61746, 36. 619843,

36. 62204, 36. 624603, 36. 636417} ;

private static final double[] lon = {-121. 854706, -121. 85192, -
121. 84914,

-121.84707, -121. 84563, - 121. 84138, - 121. 83046} ;

private Mover nyMver;
private bool ean cycling;
private Coordinate destination

publ i c Bl ueFor ceMover Manger (Mover nj {
myMover = m
nmyMover . addSi nEvent Li stener (this);
cycling = fal se;
| ocation = O;
destinati on = new Coordi nate(l at [NUM_MOVES- 1], | on[NUM_MOVES- 1]) ;

public void startCycle() {

cycling = true

nyMover . noveTo(get Next Location());
}

public void stopCycle() {
cycling = fal se;
myMover . st op() ;

76

}

public void doRun() {
start Cycle();
}

public void doEndMove(Mver n) {
if (cycling) {
start Cycle();
}
}

protected Coordi nate get NextLocation() {
| ocati on++;
i f(location < NUM MOVES){
return new Coordinate(lat[location],lon[location]);
}

el se
t hi s. stopCycl e();
return destination;

}

public static void main(String[] args) {

Mover vm = new Basi cMover (new Coor di nat e(36. 612328, - 121. 854706) ,
. 0005) ;
Bl ueFor ceMover Manger rlnm =

new Bl ueFor ceMover Manger (vim ;

Schedul e. set Si ngl eSt ep(true);
Schedul e. st opOnTi ne(1000. 0) ;
Schedul e. start Si mul ation();

77

/**

* This is an exanple of sinple "behavior". This MyverManager is
responsi bl e

* for directing a single Mwer. The behavior is that a random
location is

* chosen in a rectangle deternmined by the instance variabl es
| oner Left and

* upperRi ght, then the Mwver is directed to proceed to that |ocation
Upon

* —arrival, another random point is chosen and the Mwver directed to
t hat .

*

* @ut hor Arnold Buss

**/

i mport java.util.Vector;

i mport java.util.Enuneration
i mport sinkit.*;

i mport sinkit.data.*;

i mport sinkit.snd. *;

import sinkit.util.*;

public class RedForceMover Manger extends SinkEntityBase {

private static int |ocation;

private static final int NUM MOVES=9

private static final double LATLOABOUND = 36.611;
private static final double LONLOABOUND = 121. 815
private static final double LATH BOUND = 36. 664;
private static final double LONH BOUND = 121. 857
private static final boolean NORTH HEM = true
private static final boolean WEST_HEM = true;

private Mver nyMver;

private bool ean cycling;

private Coordinate destination

private | ong seed = 2675l

private static UnifornVariate |atCoord;
private static UnifornVariate | onCoord;

publ i ¢ RedFor ceMover Manger (Mover mj {
t hi s(m LATLOABOUND, LATHI BOUND, LONLOABOUND, LONHI BOUND)

}
publ i ¢ RedFor ceMover Manger (Mover m
doubl e I atLow, doubl e | atHi gh, double |onLow, double |onH gh) {
myMover = m
nmyMover . addSi nEvent Li stener (this);
cycling = fal se;

| ocation = O;
| onCoord = new Uni fornVari ate(l onLow, | onHi gh, seed) ;
| at Coord = new Uni fornVari ate(l at Low, | at H gh, seed) ;

78

public void startCycle() {

cycling = true;

nyMover . noveTo(get Next Location());
}

public void stopCycle() {
cycling = fal se;
myMover . st op() ;

}

public void doRun() {
start Cycle();
}

public void doEndMove(Mver n) {
if (cycling) {
start Cycle();
}
}

protected Coordinate get NextLocation() {
int sl
int s2
i f (NORT
s1=1;
el se
sl=-1;
i f (VWEST_HEM)
s2=-1;
el se
s2=1;

0;
0;
HEM)

T o

return new
Coor di nat e(s1*| at Coor d. generate(), s2*1 onCoord. generate());

}

public static void main(String[] args) {
Mover vm = new Basi cMover (new Coordi nate(37, -97), .05);
RedFor ceMover Manger rlmm =
new RedFor ceMover Manger (vm 35, 37, - 95, -97) ;
Schedul e. set Si ngl eSt ep(true);
Schedul e. st opOnTi ne(50. 0) ;
Schedul e. start Si mul ation();

79

/*
khkkhkkhkhkhkhkhhkhkhhhkhhhkhhhhhhhhhhhhhhhhkhkhhhkhhhkhhhkhhhhhhhhdhhkhkhkhkhkhkrkk krkk **x*%

*

BBNT Sol utions LLC, A part of GIE
10 Moulton St.

Canbri dge, MA 02138

(617) 873-2000

Copyright (C 1998, 2000
This software is subject to copyright protection under the | aws of
the United States and other countries.

khkkhkkhkkhkhkhkhhkhkhhkhkhhhkhkhhhkhhhhhhhhhhhhkhhhhhhhkhhkhkhhhhhkhkhkhkhkhkhkhkkhkrkk krkk **x*%

$Source: /net/blatz/udl/rcs/openmap/ conl bbn/ openmap/ Layer.java,v $
$Revision: 1.42 $

$Dat e: 2000/05/25 22:13:17 $

SAut hor: dietrick $

L I SRR R R . N B N

*

khkhkkhkhkhkhkhhkhkhhkhkhhhkhkhhhkhhhhhhhhhhhhhkhhhkhhhkhhhkhhhhkhhhhhhhkhkhkhkkhkrkk krkk **x*%

*/
package com bbn. openmap;

i mport java.awt.*;

i mport java.awt.event.*;
i mport java.util.Vector;
i mport javax.sw ng.*;

i mport com bbn. openmap. Proj ecti onPai nt er;
i mport com bbn. opennap. event . *;

i mport com bbn. openmap. proj . Proj ection;

i mport com bbn. openmap. util . Debug;

/**

* Layer objects are conponents which can be added to the MapBean to
* make a nap.

* <p>

* Layers inplenent the ProjectionListener interface to listen for

* ProjectionEvents. Wen the projection changes, they may need to
* refetch, regenerate their graphics, and then repaint thensel ves

* into the new view.

*/

public abstract class Layer
ext ends JConponent
i mpl enents ProjectionListener, ProjectionPainter

/**
* Precaches the swi ng package. Conmputed based on the package of
* <code>JConponent </ code>.
*/
protected static final String SWNG PACKACGE =
get Package(JConponent . cl ass) ;

80

/**

* The |isteners to the Layer that respond to requests for

* information displays, |ike nessages, requests for URL displays,
* etc.
*/
protected Vector |DListeners = null;
/**
* List of Layer StatusListeners.
*/

protected Vector |sListeners = null;

/**

* Argunents nodified by the Layer, or set by the Bean, at
* runtime.

*/

protected String dynam cArgs = null;

*

Flag to indicate whether a AWITool kit is avail able. Al nost
al ways should be | eft alone, unless you are doing sonethi ng
wi thout a display available. This flag, when false, redirects
the repaint() nethod to fire a Layer StatusEvent. FI Nl SH WORKI NG
i nst ead.
/
protected static bool ean AWAvail able = true;

/

* 0% X kX 3k F

/**

* Token uniquely identifying this layer in the application
* properties.

*/

protected String markerName = nul | ;

/**
* Set AWNAvail abl e fl ag.
* Your |ayer should not need to call this.
* @aram val ue bool ean
*/
public static void set AWTAvai | abl e(bool ean val ue) {
AWlAvai | abl e = val ue;
}

/**
* Check AWAvail able fl ag.
* @eturn bool ean
*/
public static bool ean i sAWAvai | abl e(){
return AWAvai | abl e;
}

/**

* Returns the package of the given class as a string.
*

* @aramc a class

*/

protected static String getPackage (O ass c) {
String classNanme = c. get Nanme();

81

int lastDot = classNane.|lastlndexOfi('.");
return cl assNane. substring(0, |astDot);

}

/**
* Override to only allow swi ng package listeners. |If Listeners
* get added to the Layers, the nouse events don't nake it to the
* map. Ever.
* <p>
* Swi ng popup nenus, |ike <code>JPopupMenu</code> grab the
* JComponent by addi ng thensel ves as <code>Mouseli st ener </ code>s.
* So this nethod all ows instances of classes in the xxx.sw ng
* package to be added as <code>Museli st ener</code>s, and no one
* el se.
*
* @aram| a nouse |istener.
*

/
public final void addMouseli stener (MuselListener 1) {
String pkg = get Package(l.getd ass());
if (java.beans. Beans.isDesignTinme()) {
super . addMbuseLi stener (1) ;
} else if (pkg.equal s(SW NG PACKAGE)) {
/1 Do nothing. The nenus work fine at the nonent (5/19,
/1 JDK 1.1.6, Swing 1.0.2), but nay break in the future.
} else if (pkg.startsWth(SW NG PACKAGE)) {
/1 Do nothing. This enables the nenus to work
/1 in JDK 1.2rcl, where the MuseListener is in
/1 package javax.sw ng.pl af.basic and the SW NG PACKAGE
/1 is javax.sw ng.

} else {
throw new |11 egal Argunent Excepti on(
"This operation is disallowed because the package \""
+ pkg + "\" is not in the swing package (\"" +
SW NG _PACKAGE + "\").");
}
}
/**

* Interface Layer nmethod to get the dynanic args.
* @eturn String args
*/
public String getArgs () {
return dynam cArgs;
}

/**

* Interface Layer nmethod to set the dynanic args.
* @aramargs String
*/
public void setArgs (String args) {
dynam cArgs = args;

}
/**

* Interface Layer nmethod to receive |layer argunents.
* @aramargv String[]

82

*

/

public void setArgs (String argv[]) {

}

/**
* Accessor for the marker associated with this layer. This is
* the marker that uniquely identifies this layer in the

* application properties.

*

/

public String get Marker() {

}
/

LB I R S T R

~

r

*

eturn mar ker Nane;

Sets the properties for the <code>Layer</code>. This allows
<code>Layer</code>s to get a richer set of paraneters than the
<code>set Ar gs</ code> net hod.
Layers which override this nethod should do sonething |ike:
<code><pre>
public void setProperties (String prefix, Properties props) {
super. set Properties(prefix, props);
/1 do local stuff
}
</ pre></ code>
@aram prefix the token to prefix the property nanes
@ar am props the <code>Properti es</code> obj ect
@ee #set Args

public void setProperties(String prefix, java.util.Properties
props) {

}
/

L R R R I I I

~

set Nane(props. get Property(prefix +

. prettyName", "Anonynous"));

mar ker Name = prefi x;

*

Returns the MapMuseli stener object that handl es the nouse
events. This nethod is IGNORED in this class: it returns null.
Derived Layers should return the appropriate object if they
desire to receive MouseEvents. The easiest thing for a Layer
to do in order to receive MuseEvents is to inplenent the
MapMuseLi stener interface and return itself. A code snippet:
<code><pre>

publ i c MapMouselLi st ener get MapMouseli stener() {

return this;

}
public String[] get MouseModeServi celList() {
return new String[] {
Sel ect MouseMode. nodel D
1
}

</ pre></code>
@eturn null

public synchroni zed MapMouselLi st ener get MapMouselLi st ener ()

{
}

r

eturn nul | ;

83

/**

* Set the MapMuseListener for the |ayer.

* This method is IGNORED in this class.

* @aramnm the object that will handle the nobuse events for the
* | ayer.

* @leprecated this is an unnecessary function. The Layer is

* responsi bl e for handling MuseEvents as it chooses.

*/

public synchroni zed void set MapMuselLi st ener (MapMouseli st ener nmi)
{

}
/**
* Gets the gui controls associated with the |ayer.
* This default inplenmentation returns null indicating
* that the |layer has no gui controls.
*
* @eturn java.awt . Conponent or null
*

~

public java.awt.Conponent getGUJ () {
return null;
}

NN NN NNy
/1 InfoDisplay Handling Setup and Firing

/**

* Adds a listener for <code>l nfoDi spl ayEvent </ code>s.
*
* @aram al nf oDi spl ayLi stener the |listener to add
*/
publ i c synchroni zed voi d addl nf oDi spl ayLi stener (
I nf oDi spl ayLi st ener al nfoDi spl ayLi stener) {
if (IDListeners == null) {
| DLi steners = new java. util.Vector();
}

| DLi st ener s. addEl enment (al nf oDi spl ayLi st ener);

}
/**

* Renoves an | nfoDisplayListener fromthis Layer.
*
* @aram al nf oDi spl ayLi stener the listener to renove
*/
publ i c synchroni zed void renovel nf oDi spl ayLi st ener (
I nf oDi spl ayLi st ener al nfoDi spl ayLi stener) {

if (IDListeners == null) {
return,
}
| DLi st eners. renoveEl enent (al nf oDi spl ayLi st ener);
}
/**

* Sends a request to the InfoDisplayListener to show the
information in

* the InfoDisplay event on an single line display facility.
* @aram evt the InfoDisplay event carrying the string.
*/
public void fireRequest!nfoLine(lnfoD splayEvent evt)({
I nf oDi spl ayLi stener tenp[] = getSynchroni zedLi steners();
if (temp !'= null){
for (int i =0; i <tenp.length; i++){
tenmp[i].requestl|nfoLine(evt);
}

el se Debug. message("Layer", getNane() +
"| Layer.fireRequestInfoLine(): no info request
listener!");

}
/**
* Sends a request to the InfoDisplay listener to display the
i nf ormati on
* on an single line display facility.
* The InfoDisplayEvent is created inside this function.
* @araminfolLine the string to put in the |InfoD splayEvent.
*/
public void fireRequestlnfoLine(String infoLine)({
fireRequest | nfolLi ne(new | nfobDi spl ayEvent (this, infolLine));
}

/**

* Sends a request to the InfoDisplay listener to display the
i nformation
* in the InfoDisplay event in a Browser.
* @aram evt the InfoDisplayEvent holding the contents to put in
t he
* Browser.
*/
public void fireRequestBrowser Content (I nfoD splayEvent evt){
I nf oDi spl ayLi stener tenp[] = getSynchroni zedLi steners();
if (temp !'= null){
for (int i =0; i <tenp.length; i++){
tenp[i].request Browser Content (evt);
}

el se Debug. message("Layer", getNane() +
"| Layer.fireRequest BrowserContent(): no info
request listener!");

}
/**

* Sends a request to the InfoDisplayListener to display the
i nfornmation
* in a Browser.
* The InfoDisplayEvent is created here hol ding the browser Content
* @aram browser Content the contents to put in the Browser.
*/
public void fireRequestBrowserContent (String browser Content) {
fireRequest Browser Cont ent (new | nf oDi spl ayEvent (thi s,
br owser Content));

85

/**

* Sends a request to the InfoDisplayListener to display a URL
given in
* the InfoDisplay event in a Browser.
* @aram evt the InfobDisplayEvent holding the url location to give
to
* the Browser.
*/
public void fireRequest URL(I nfoDi spl ayEvent evt){
I nf oDi spl ayLi stener tenp[] = get Synchroni zedLi steners();
if (temp !'= null){
for (int i =0; i <tenp.length; i++){
tenp[i].request URL(evt);
}

el se Debug. message("Layer", getNane() +
"| Layer.fireRequestURL(): no info request
listener!");

}
/**

* Sends a request to the InfoDisplayListener to display a URL in a
* browser.
* The InfoDisplayEvent is created here, and the URL | ocation is
put
* inside it.
* @aramurl the url location to give to the Browser.
*/
public void fireRequestURL(String url){
fireRequest URL(new | nfoDi spl ayEvent (this, url));
}

/**
* Sends a request to the InfoDisplayListener to show a specific
cursor
* over its conponent area.
* @aram cursor the cursor to use.
*/
public void fireRequestCursor(java.awt.Cursor cursor){
I nf oDi spl ayLi stener tenp[] = getSynchroni zedLi steners();
if (temp !'= null){
for (int i =0; i < tenp.length; i++){
tenp[i].request Cursor(cursor);
}

el se Debug. message("Layer", getNane() +
"| Layer.fireRequestCursor(): no info request
listener!");

}
/**
* Sends a request to the InfoDisplaylListener to put the
information in
* the InfoDisplay event in a dial og w ndow.

* @aram evt the InfoDisplayEvent hol ding the nessage to put into
* the dial og wi ndow.

86

*/
public void fireRequest Message(| nfobDi spl ayEvent evt){
I nf oDi spl ayLi stener[] tenp = get Synchroni zedLi st eners();
if (temp !'= null){
for (int i =0; i <tenp.length; i++){
tenmp[i].request Message(evt);
}
}
el se Debug. nessage("Layer", getNanme() +
"| Layer . fireRequest Message(): no info request
[istener!");

}
/**
* Sends a request to the InfoDisplayListener to display the
i nfornmation
* in a dialog w ndow.
* The InfoDisplayEvent is created here, and the URL | ocation is
put
* inside it.
* @aram nessage the nmessage to put in the dial og w ndow.
*/
public void fireRequest Message(String nessage){
fireRequest Message(new | nfoDi spl ayEvent (thi s, nessage));

}
/**
* Get the InfoDisplayLi steners.
* Provides an internal |nfoD splayListener that is synchronized at
t he
time of the check for null, so that we won't attenpt to use it
| ater where there night have been an opportunity for it to have
been del eted. Huh?
@eturn a personal copy of the InfoDi splaylListener
/
protected | nfobDi splayListener[] getSynchronizedLi steners(){
/1 use this for freakin' thread safety
I nf oDi spl ayLi stener[] tenp = null;
synchroni zed (this) {
if (IDListeners == null) return tenp;
i nt nunLi steners = | DLi steners. size();
temp = new I nfoDispl ayLi stener[nunLi st eners];
for (int i 0; i < nunListeners; i++){
tenmp[i] (I nf oDi spl ayLi stener) | DLi steners. el enent At (i);
}
}

return tenp;
}

* % Xk *

NNy
/1 Layer Status Handling Setup and Firing

/**

* Returns an array of all the Layer StatusListeners.
* @eturn Layer StatusLi stener[]
*/

87

protected Layer StatusListener[] get Synchroni zedSt at usLi steners(){
/] use this for freakin' thread safety
Layer St at usLi stener[] tenp = null
synchroni zed (this) {

if (IsListeners == null) return tenp;
i nt nunLi steners = |sListeners.size();
tenp = new Layer St atusLi st ener[nunii st eners];
for (int i =0; i < nuniisteners; i++){
tenp[i] = (Layer StatusListener)lsListeners.elenmentAt(i);
}
}
return tenp
}
/**

* Adds a listener for <code>Layer StatusEvent </ code>s.

*

* @aram alLayer St at usLi stener Layer St at usLi st ener

*/

public synchroni zed voi d addLayer St at usLi st ener (
Layer St at usLi st ener alLayer St at usLi st ener)

if (IsListeners == null) {
| sListeners = new java. util.Vector();
}
| sLi st eners. addEl enent (aLayer St at usLi st ener) ;
}
/**

* Renoves a Layer StatusLi stene fromthis Layer.

*

* @aram alLayer St at usLi stener the listener to renove

*/

publ i c synchroni zed void renovelLayer St at usLi st ener (
Layer St at usLi st ener alLayer St at usLi stener) {

if (IsListeners == null) {
return;
}
| sLi st eners. renoveEl enent (aLayer St at usLi st ener);
}
/**

* Sends a status update to the Layer StatusLi stener
* @aram evt Layer St at usEvent
*/
public void fireStatusUpdat e(Layer StatusEvent evt)({
i f (AWIAvail abl e){
Layer St at usLi stener[] tenmp =
get Synchr oni zedSt at usLi st eners();
if (temp !'= null){
for (int i =0; i < tenp.length; i++){
tenp[i].updat eLayer St at us(evt);
}

el se Debug. message("Layer", getNane() +

88

"| Layer.fireStatusUpdate(): no
Layer St at usLi stener!");

}
}

/**
* Sends a status update to the Layer StatusListener.
* @aram evt Layer St at usEvent
*/
public void fireStatusUpdate(int status) {
fireStatusUpdat e(new Layer St at usEvent (this, status));

}
/**
* Repaint the |ayer.
* You should not need to override this.
*/
public void repaint(){
if (AWIAvail abl e) super.repaint();
el se {
/1 This looks like a fireStatusUpdate, right? But that is
/1 disabled if ! AWlAvailable. The only way to fire the
/] status is finished is by calling a repaint. Doing
/1 anything el se confuses the G FMapBean. The firing of
/1 this status update nmay be redundant for |ayers that use
/1 the status updates already, but we have to play snart
/1 for all layers, especially for those who don't play
/1 nice.
Layer St at usEvent evt = new Layer St at usEvent (thi s,
Layer St at usEvent . FI NI SH WORKI NG) ;
Layer St at usLi stener[] tenp =
get Synchr oni zedSt at usLi st eners();
if (temp !'= null){
for (int i =0; i <tenp.length; i++){
tenp[i].updat eLayer St at us(evt);
}

}
}
}

/**

* Repaint the |ayer.
* | f you are using BufferedvapBean for your application,

* WE STRONGLY RECOMMEND THAT YOU DO NOT OVERRI DE TH S METHCD.

* This method marks the layer buffer so that it will be refreshed.
* |f you override this nmethod, and don't call super.repaint(),

* the layers will not be repainted.

*/

public void repaint(long tm int x, int y, int width, int height) {
Conponent p = getParent();
i f(p instanceof BufferedMapBean) {
((Buf f er edVapBean) p) . set Request Pai nt (true);
i f (Debug. debuggi ng("basic")) {
Debug. out put (get Nane() +"|Layer: repaint(tm=" + tm+

"ox=" 4+ x +
"Ly=" +y +
", width=" + width +

89

", height=" + height + ")");
}
}
super.repaint(tm x, y, width, height);
}

/

*

This method is here to provide a default action for Layers as
they act as a ProjectionPainter. Normally, ProjectionPainters
are expected to receive the projection, gather/create

OME aphics that apply to the projection, and render theminto
the Graphics provided. This is supposed to be done in the
sane thread that calls this function, so the caller knows that
when this nmethod returns, everything that the

Proj ecti onPai nter needed to do is conplete.<P> If the |ayer
doesn't override this nethod, then the paint (G aphics) nethod
will be called.

@aram proj Projection of the map.
@aram g java.awt. Graphics to draw into.

L T R S I T N R R

~

public void renderDat aFor Proj ecti on(Projection proj, Gaphics g){
pai nt (g);

/**

* This method is called when the |layer is added to the MapBean
* @aram cont Cont ai ner
*/

public void added(Cont ai ner cont)

{

}

/ *
This method is called after the layer is renpoved fromthe
MapBean and when the projection changes. W reconmmend that
Layers override this method and nullify nmenory-intensive
vari abl es.
@ar am cont Cont ai ner

/

public void renoved(Container cont)

{

}

* 0% ok kX 3k F

90

LIST OF REFERENCES

Bradley, G.H., Buss, A.H., An Architecture for Dynamic Planning Systems Using
Loosely Coupled Components, Proposal for Reimbursable Research, Naval Postgraduate

School Monterey, CA, USA, 1997.

Buss, A.H., Modeling with Event Graphs, Proceedings of the 1996 Winter Simulation

Conference, D. Morrice, J. Charnes (eds), Coronado, CA, USA, 1996.

Buss, A.H., A Tutorial on Discrete-Event Modeling with Simulation Graphs, Proceedings
of the 1995 Winter Simulation Conference, K. Kang, W. Lilegdon, D. Goldsman (eds),

Arlington, VA, USA, 1995.

Chan, P, Lee, R., Kramer, D.,The Java Class Libraries, Second Edition, Volume 1,

Addison-Wesley , Berkeley, CA, USA, 1998.

Chan, P., Lee, R., The Java Class Libraries, Second Edition, Volume 2, Addison-Wesley,

Berkeley, CA, USA, 1997.

Chairman of the Joint Chiefs of Staff (1996). Joint Vision 2010, Pentagon, Washington,

D.C.: Author.

Department of Defense (1999). Design Criteria Standard: Human Engineering, (DoD
Publication No. MIL-STD-1472F), Washington, D.C.: Author.

Dix, A. J, Finlay, J. E., Abowd, G. D. & Bede, R. (1998). Human-Computer
Interaction, Prentice Hall Europe.

Flanagan, D., Java in a Nutshell, A Desktop Quick Reference, Second Edition, O’ Rellly,

Sebasopol, CA, USA, 1997.

91

Hix, D. & Hartson, R. H. (1993). Developing User Interfaces Ensuring Usability

Through Product & Process, John Wiley & Sons, Inc., New York, New Y ork.

Law A.M., Kelton W.D., Simulation Modeling & Analyss, second edition, McGraw-Hill

Inc., New York, NY, USA, 1991.

Nielsen, J. (1999). Heuristic Evaluation, Usability Inspection Methods, John Wiley &

Sons, New York, New York.

Nielsen, J. (1993). Usability Engineering, Academic Press, Cambridge, Massachusetts,

Niglsen, J. & Molich, R. (1990). Improving a Human-Computer Dialog,

Communications of the ACM, 33, 338-348.

Shneiderman, B. (1997). Designing the User Interface — Strategies for Effective Human-
Computer Interaction, Third Edition, Addison-Wesley Longman Inc., Menlo Park,

Cdlifornia.

Stork, K., Sensors in Object Oriented Discrete Event Simulation, Master Thesis, Naval

Postgraduate School Monterey, CA, USA, 1996.

Weber, JL., Using Java 1.2, Specia Edition, QUE, Indianapolis, IN, USA, 1998.

Zukowski, J., Java, AWT reference, O’ Reilly, Sebasopol, CA, USA, 1997.

92

INITIAL DISTRIBUTION LIST

Defense Technical INfOrmMation CEINTEToeveeeeeeeeee e e e e e eee e e e e e e e e e eanaaeens
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

DUudl@y KNOX LIDIAIY ..cc.veiiiieeieesiee ettt
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

Prof. A.H. BUSS, COAE OR/BUcooeeeeeeeeeeeeeeeeeeeee
Naval Postgraduate School

Operations Research Department

Monterey, California 93943

Prof. Dan Boger, COOE CS/BOccccuieiiiieeiiie e eeeeesteeeseee s aaeesssaeeesnaeeennneeennneeennes
Naval Postgraduate School

Computer Science Department

Monterey, California 93943

Prof. R.P. Darken, COAE CSIDYoooveiieeeeeeeeeeeeeee
Naval Postgraduate School

Computer Science Department

Monterey, California 93943

Prof. G.H.Bradley, COde OR/BZ...........cccuuiiiie e e eieeesee e te e e e e nnae e e nnnee e
Naval Postgraduate School

Operations Research Department

Monterey, California 93943

LT PATICK IMACK ..ot e ettt eaeeeeeenaaeeeeenaseeeennaneeeennaeees

169544 Water Gap Road
Williams, Oregon 97544

93

